Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285386449> ?p ?o ?g. }
- W4285386449 abstract "Aims/Hypothesis Large-scale prediabetes screening is still a challenge since fasting blood glucose and HbA 1c as the long-standing, recommended analytes have only moderate diagnostic sensitivity, and the practicability of the oral glucose tolerance test for population-based strategies is limited. To tackle this issue and to identify reliable diagnostic patterns, we developed an innovative metabolomics-based strategy deviating from common concepts by employing urine instead of blood samples, searching for sex-specific biomarkers, and focusing on modified metabolites. Methods Non-targeted, modification group-assisted metabolomics by liquid chromatography–mass spectrometry (LC-MS) was applied to second morning urine samples of 340 individuals from a prediabetes cohort. Normal ( n = 208) and impaired glucose-tolerant (IGT; n = 132) individuals, matched for age and BMI, were randomly divided in discovery and validation cohorts. ReliefF, a feature selection algorithm, was used to extract sex-specific diagnostic patterns of modified metabolites for the detection of IGT. The diagnostic performance was compared with conventional screening parameters fasting plasma glucose (FPG), HbA 1c , and fasting insulin. Results Female- and male-specific diagnostic patterns were identified in urine. Only three biomarkers were identical in both. The patterns showed better AUC and diagnostic sensitivity for prediabetes screening of IGT than FPG, HbA 1c , insulin, or a combination of FPG and HbA 1c . The AUC of the male-specific pattern in the validation cohort was 0.889 with a diagnostic sensitivity of 92.6% and increased to an AUC of 0.977 in combination with HbA 1c . In comparison, the AUCs of FPG, HbA 1c , and insulin alone reached 0.573, 0.668, and 0.571, respectively. Validation of the diagnostic pattern of female subjects showed an AUC of 0.722, which still exceeded the AUCs of FPG, HbA 1c , and insulin (0.595, 0.604, and 0.634, respectively). Modified metabolites in the urinary patterns include advanced glycation end products (pentosidine-glucuronide and glutamyl-lysine-sulfate) and microbiota-associated compounds (indoxyl sulfate and dihydroxyphenyl-gamma-valerolactone-glucuronide). Conclusions/Interpretation Our results demonstrate that the sex-specific search for diagnostic metabolite biomarkers can be superior to common metabolomics strategies. The diagnostic performance for IGT detection was significantly better than routinely applied blood parameters. Together with recently developed fully automatic LC-MS systems, this opens up future perspectives for the application of sex-specific diagnostic patterns for prediabetes screening in urine." @default.
- W4285386449 created "2022-07-14" @default.
- W4285386449 creator A5010961147 @default.
- W4285386449 creator A5013283299 @default.
- W4285386449 creator A5013839934 @default.
- W4285386449 creator A5014505944 @default.
- W4285386449 creator A5019987617 @default.
- W4285386449 creator A5022633685 @default.
- W4285386449 creator A5029436410 @default.
- W4285386449 creator A5031458824 @default.
- W4285386449 creator A5033072669 @default.
- W4285386449 creator A5056393712 @default.
- W4285386449 creator A5058966302 @default.
- W4285386449 creator A5060385904 @default.
- W4285386449 creator A5062462205 @default.
- W4285386449 creator A5071701692 @default.
- W4285386449 creator A5075158591 @default.
- W4285386449 creator A5080191032 @default.
- W4285386449 date "2022-07-14" @default.
- W4285386449 modified "2023-10-11" @default.
- W4285386449 title "Diagnostic Performance of Sex-Specific Modified Metabolite Patterns in Urine for Screening of Prediabetes" @default.
- W4285386449 cites W1500895378 @default.
- W4285386449 cites W1545302199 @default.
- W4285386449 cites W1683511819 @default.
- W4285386449 cites W1892363833 @default.
- W4285386449 cites W1977362933 @default.
- W4285386449 cites W1997404662 @default.
- W4285386449 cites W2002967059 @default.
- W4285386449 cites W2012070284 @default.
- W4285386449 cites W2017771330 @default.
- W4285386449 cites W2021072978 @default.
- W4285386449 cites W2021920141 @default.
- W4285386449 cites W2029762382 @default.
- W4285386449 cites W2030848086 @default.
- W4285386449 cites W2035108296 @default.
- W4285386449 cites W2069440313 @default.
- W4285386449 cites W2074220110 @default.
- W4285386449 cites W2074518678 @default.
- W4285386449 cites W2088904058 @default.
- W4285386449 cites W2095473487 @default.
- W4285386449 cites W2096380706 @default.
- W4285386449 cites W2097958244 @default.
- W4285386449 cites W2099491564 @default.
- W4285386449 cites W2100144002 @default.
- W4285386449 cites W2105216337 @default.
- W4285386449 cites W2105609395 @default.
- W4285386449 cites W2107797783 @default.
- W4285386449 cites W2116705629 @default.
- W4285386449 cites W2136683662 @default.
- W4285386449 cites W2144636739 @default.
- W4285386449 cites W2145063435 @default.
- W4285386449 cites W2145665725 @default.
- W4285386449 cites W2150764769 @default.
- W4285386449 cites W2151267530 @default.
- W4285386449 cites W2158958532 @default.
- W4285386449 cites W2178731093 @default.
- W4285386449 cites W2300105465 @default.
- W4285386449 cites W2318611331 @default.
- W4285386449 cites W2478791509 @default.
- W4285386449 cites W254079993 @default.
- W4285386449 cites W2569252602 @default.
- W4285386449 cites W2765418108 @default.
- W4285386449 cites W2794793310 @default.
- W4285386449 cites W2796144553 @default.
- W4285386449 cites W2810989245 @default.
- W4285386449 cites W2889916551 @default.
- W4285386449 cites W2892106337 @default.
- W4285386449 cites W2893363828 @default.
- W4285386449 cites W2904715241 @default.
- W4285386449 cites W2915887125 @default.
- W4285386449 cites W2946415573 @default.
- W4285386449 cites W2964278775 @default.
- W4285386449 cites W2968307460 @default.
- W4285386449 cites W2977283739 @default.
- W4285386449 cites W2989775132 @default.
- W4285386449 cites W3000279299 @default.
- W4285386449 cites W3032874471 @default.
- W4285386449 cites W3088688933 @default.
- W4285386449 cites W3093304846 @default.
- W4285386449 cites W3097882759 @default.
- W4285386449 cites W3109112590 @default.
- W4285386449 cites W3120205736 @default.
- W4285386449 cites W3169789993 @default.
- W4285386449 cites W3175843166 @default.
- W4285386449 cites W3185727261 @default.
- W4285386449 cites W3193983628 @default.
- W4285386449 cites W3194621231 @default.
- W4285386449 cites W3214518736 @default.
- W4285386449 cites W4200155774 @default.
- W4285386449 cites W4200533463 @default.
- W4285386449 cites W4225413474 @default.
- W4285386449 cites W2973436219 @default.
- W4285386449 doi "https://doi.org/10.3389/fendo.2022.935016" @default.
- W4285386449 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35909528" @default.
- W4285386449 hasPublicationYear "2022" @default.
- W4285386449 type Work @default.
- W4285386449 citedByCount "1" @default.
- W4285386449 countsByYear W42853864492023 @default.
- W4285386449 crossrefType "journal-article" @default.
- W4285386449 hasAuthorship W4285386449A5010961147 @default.