Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285389133> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4285389133 endingPage "2691" @default.
- W4285389133 startingPage "2681" @default.
- W4285389133 abstract "Deep learning provides the healthcare industry with the ability to analyse data at exceptional speeds without compromising on accuracy. These techniques are applicable to healthcare domain for accurate and timely prediction. Convolutional neural network is a class of deep learning methods which has become dominant in various computer vision tasks and is attracting interest across a variety of domains, including radiology. Lung diseases such as tuberculosis (TB), bacterial and viral pneumonias, and COVID-19 are not predicted accurately due to availability of very few samples for either of the lung diseases. The disease could be easily diagnosed using X-ray or CT scan images. But the number of images available for each of the disease is not as equally as other resulting in imbalance nature of input data. Conventional supervised machine learning methods do not achieve higher accuracy when trained using a lesser amount of COVID-19 data samples. Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset. Data augmentation helped reduce overfitting when training a deep neural network. The SMOTE (Synthetic Minority Oversampling Technique) algorithm is used for the purpose of balancing the classes. The novelty in this research work is to apply combined data augmentation and class balance techniques before classification of tuberculosis, pneumonia, and COVID-19. The classification accuracy obtained with the proposed multi-level classification after training the model is recorded as 97.4% for TB and pneumonia and 88% for bacterial, viral, and COVID-19 classifications. The proposed multi-level classification method produced is ~8 to ~10% improvement in classification accuracy when compared with the existing methods in this area of research. The results reveal the fact that the proposed system is scalable to growing medical data and classifies lung diseases and its sub-types in less time with higher accuracy." @default.
- W4285389133 created "2022-07-14" @default.
- W4285389133 creator A5029494888 @default.
- W4285389133 creator A5054684222 @default.
- W4285389133 creator A5067886298 @default.
- W4285389133 creator A5076980793 @default.
- W4285389133 creator A5077768569 @default.
- W4285389133 creator A5090823144 @default.
- W4285389133 date "2022-07-14" @default.
- W4285389133 modified "2023-10-11" @default.
- W4285389133 title "Classification of COVID-19 from tuberculosis and pneumonia using deep learning techniques" @default.
- W4285389133 cites W2072680007 @default.
- W4285389133 cites W2135900825 @default.
- W4285389133 cites W2148143831 @default.
- W4285389133 cites W2168508521 @default.
- W4285389133 cites W2582043155 @default.
- W4285389133 cites W2788633781 @default.
- W4285389133 cites W2800788706 @default.
- W4285389133 cites W2809598685 @default.
- W4285389133 cites W2891756914 @default.
- W4285389133 cites W2998957378 @default.
- W4285389133 cites W3017309755 @default.
- W4285389133 cites W3023402713 @default.
- W4285389133 cites W3083972167 @default.
- W4285389133 cites W3087275632 @default.
- W4285389133 cites W3089326051 @default.
- W4285389133 cites W3107326710 @default.
- W4285389133 cites W3137097829 @default.
- W4285389133 cites W3138655689 @default.
- W4285389133 cites W3146861394 @default.
- W4285389133 cites W3154252594 @default.
- W4285389133 cites W3164988417 @default.
- W4285389133 cites W3172071874 @default.
- W4285389133 cites W3179222985 @default.
- W4285389133 cites W3199810304 @default.
- W4285389133 cites W4200052220 @default.
- W4285389133 cites W4200115241 @default.
- W4285389133 doi "https://doi.org/10.1007/s11517-022-02632-x" @default.
- W4285389133 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35834050" @default.
- W4285389133 hasPublicationYear "2022" @default.
- W4285389133 type Work @default.
- W4285389133 citedByCount "2" @default.
- W4285389133 countsByYear W42853891332023 @default.
- W4285389133 crossrefType "journal-article" @default.
- W4285389133 hasAuthorship W4285389133A5029494888 @default.
- W4285389133 hasAuthorship W4285389133A5054684222 @default.
- W4285389133 hasAuthorship W4285389133A5067886298 @default.
- W4285389133 hasAuthorship W4285389133A5076980793 @default.
- W4285389133 hasAuthorship W4285389133A5077768569 @default.
- W4285389133 hasAuthorship W4285389133A5090823144 @default.
- W4285389133 hasBestOaLocation W42853891331 @default.
- W4285389133 hasConcept C108583219 @default.
- W4285389133 hasConcept C119857082 @default.
- W4285389133 hasConcept C153180895 @default.
- W4285389133 hasConcept C154945302 @default.
- W4285389133 hasConcept C197323446 @default.
- W4285389133 hasConcept C22019652 @default.
- W4285389133 hasConcept C2776257435 @default.
- W4285389133 hasConcept C31258907 @default.
- W4285389133 hasConcept C41008148 @default.
- W4285389133 hasConcept C50644808 @default.
- W4285389133 hasConcept C81363708 @default.
- W4285389133 hasConceptScore W4285389133C108583219 @default.
- W4285389133 hasConceptScore W4285389133C119857082 @default.
- W4285389133 hasConceptScore W4285389133C153180895 @default.
- W4285389133 hasConceptScore W4285389133C154945302 @default.
- W4285389133 hasConceptScore W4285389133C197323446 @default.
- W4285389133 hasConceptScore W4285389133C22019652 @default.
- W4285389133 hasConceptScore W4285389133C2776257435 @default.
- W4285389133 hasConceptScore W4285389133C31258907 @default.
- W4285389133 hasConceptScore W4285389133C41008148 @default.
- W4285389133 hasConceptScore W4285389133C50644808 @default.
- W4285389133 hasConceptScore W4285389133C81363708 @default.
- W4285389133 hasIssue "9" @default.
- W4285389133 hasLocation W42853891331 @default.
- W4285389133 hasLocation W42853891332 @default.
- W4285389133 hasLocation W42853891333 @default.
- W4285389133 hasOpenAccess W4285389133 @default.
- W4285389133 hasPrimaryLocation W42853891331 @default.
- W4285389133 hasRelatedWork W2009754619 @default.
- W4285389133 hasRelatedWork W2972423375 @default.
- W4285389133 hasRelatedWork W3029198973 @default.
- W4285389133 hasRelatedWork W3099765033 @default.
- W4285389133 hasRelatedWork W3119578451 @default.
- W4285389133 hasRelatedWork W3133861977 @default.
- W4285389133 hasRelatedWork W3167935049 @default.
- W4285389133 hasRelatedWork W3193565141 @default.
- W4285389133 hasRelatedWork W4226493464 @default.
- W4285389133 hasRelatedWork W4312417841 @default.
- W4285389133 hasVolume "60" @default.
- W4285389133 isParatext "false" @default.
- W4285389133 isRetracted "false" @default.
- W4285389133 workType "article" @default.