Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285389432> ?p ?o ?g. }
- W4285389432 endingPage "49" @default.
- W4285389432 startingPage "28" @default.
- W4285389432 abstract "Background/ Purpose: Reviewing of the various work and literature in the proposed areas will help in developing a strong foundation of the domain on which the research is planned. The reason forth for the literature review is to become familiar in the health care domain. Since the area selected is the health care domain, the recent literature review is carried out as it is very important. Objective: A strong background on health care domain is developed and a new problem which is not addressed is discussed. The gaps in the research area are identified. A new solution for solving the problem is designed and developed. Design/Methodology: This work has adapted secondary source of data which is mainly journals, articles and review comments. The relevant literature is selected and a detailed study is conducted. This has helped in drafting the problem statement. Findings/Results: The finding and drawbacks of all the recent work are well studied. The reason for the gap is also well studied and the results of each work are also well analyzed. Research Limitations: A detailed study done on the chronic diseases and its impact has helped to open up the importance of studying about comorbid diseases. The limitations of various machine learning algorithms are also studied. Originality/Value: This paper aims at studying the relevant existing literature that includes research journals, conference papers, technical book chapter and few web sources. All the papers selected were relevant to the proposed work and all papers are recent and from well reputed publisher. The papers are cited by many authors. Paper Type: Literature review paper is carried out on scientific papers, especially from well indexed services." @default.
- W4285389432 created "2022-07-14" @default.
- W4285389432 creator A5079585199 @default.
- W4285389432 creator A5084510223 @default.
- W4285389432 date "2022-07-14" @default.
- W4285389432 modified "2023-10-17" @default.
- W4285389432 title "A Literature Review on Prediction of Chronic Diseases using Machine Learning Techniques" @default.
- W4285389432 cites W1532110920 @default.
- W4285389432 cites W1901797638 @default.
- W4285389432 cites W1995258399 @default.
- W4285389432 cites W2012055098 @default.
- W4285389432 cites W2015466899 @default.
- W4285389432 cites W2019180375 @default.
- W4285389432 cites W2025667197 @default.
- W4285389432 cites W2030912027 @default.
- W4285389432 cites W2055245029 @default.
- W4285389432 cites W2062302861 @default.
- W4285389432 cites W2066525392 @default.
- W4285389432 cites W2078107279 @default.
- W4285389432 cites W2088964239 @default.
- W4285389432 cites W2117646649 @default.
- W4285389432 cites W2118020653 @default.
- W4285389432 cites W2146424733 @default.
- W4285389432 cites W2147273498 @default.
- W4285389432 cites W2158842434 @default.
- W4285389432 cites W2161085437 @default.
- W4285389432 cites W2170654002 @default.
- W4285389432 cites W2198899446 @default.
- W4285389432 cites W2200122354 @default.
- W4285389432 cites W2238261330 @default.
- W4285389432 cites W2239135493 @default.
- W4285389432 cites W2350753454 @default.
- W4285389432 cites W2379581788 @default.
- W4285389432 cites W2468342282 @default.
- W4285389432 cites W2498119267 @default.
- W4285389432 cites W2503361601 @default.
- W4285389432 cites W2521029800 @default.
- W4285389432 cites W2542912824 @default.
- W4285389432 cites W2545923857 @default.
- W4285389432 cites W2593330790 @default.
- W4285389432 cites W2610135452 @default.
- W4285389432 cites W2610342928 @default.
- W4285389432 cites W2613435286 @default.
- W4285389432 cites W2622382573 @default.
- W4285389432 cites W2748902594 @default.
- W4285389432 cites W2755582817 @default.
- W4285389432 cites W2764078585 @default.
- W4285389432 cites W2766663781 @default.
- W4285389432 cites W2775450699 @default.
- W4285389432 cites W2779177281 @default.
- W4285389432 cites W2784257089 @default.
- W4285389432 cites W2790256058 @default.
- W4285389432 cites W2797700545 @default.
- W4285389432 cites W2807027008 @default.
- W4285389432 cites W2811160324 @default.
- W4285389432 cites W2885709998 @default.
- W4285389432 cites W2886278051 @default.
- W4285389432 cites W2888823774 @default.
- W4285389432 cites W2897733270 @default.
- W4285389432 cites W2898098486 @default.
- W4285389432 cites W2898109750 @default.
- W4285389432 cites W2900329012 @default.
- W4285389432 cites W2901370416 @default.
- W4285389432 cites W2903099708 @default.
- W4285389432 cites W2904579171 @default.
- W4285389432 cites W2906396551 @default.
- W4285389432 cites W2941927753 @default.
- W4285389432 cites W2949767632 @default.
- W4285389432 cites W2950964892 @default.
- W4285389432 cites W2954194962 @default.
- W4285389432 cites W2958235752 @default.
- W4285389432 cites W2969490911 @default.
- W4285389432 cites W2997606798 @default.
- W4285389432 cites W3001855876 @default.
- W4285389432 cites W3001857267 @default.
- W4285389432 cites W3017632260 @default.
- W4285389432 cites W3033926873 @default.
- W4285389432 cites W3044806259 @default.
- W4285389432 cites W3080566490 @default.
- W4285389432 cites W3083702094 @default.
- W4285389432 cites W3091648495 @default.
- W4285389432 cites W3091830486 @default.
- W4285389432 cites W3108643935 @default.
- W4285389432 cites W3111353854 @default.
- W4285389432 cites W3119358510 @default.
- W4285389432 cites W3120814856 @default.
- W4285389432 cites W3198304075 @default.
- W4285389432 cites W3199593332 @default.
- W4285389432 cites W3204734758 @default.
- W4285389432 cites W4210994988 @default.
- W4285389432 cites W4236137412 @default.
- W4285389432 cites W4243543335 @default.
- W4285389432 cites W4251513392 @default.
- W4285389432 cites W4289209184 @default.
- W4285389432 doi "https://doi.org/10.47992/ijmts.2581.6012.0209" @default.
- W4285389432 hasPublicationYear "2022" @default.
- W4285389432 type Work @default.
- W4285389432 citedByCount "1" @default.