Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285392382> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4285392382 endingPage "7067" @default.
- W4285392382 startingPage "7067" @default.
- W4285392382 abstract "Deep learning networks (DLNs) use multilayer neural networks for multiclass classification that exhibit better results in wind-power forecasting applications. However, improving the training process using proper parameter hyperisations and techniques, such as regularisation and Adam-based optimisation, remains a challenge in the design of DLNs for processing time-series data. Moreover, the most appropriate parameter for the DLN model is to solve the wind-power forecasting problem by considering the excess training algorithms, such as the optimiser, activation function, batch size, and dropout. Reinforcement learning (RN) schemes constitute a smart approach to explore the proper initial parameters for the developed DLN model, considering a balance between exploration and exploitation processes. Therefore, the present study focuses on determining the proper hyperparameters for DLN models using a Q-learning scheme for four developed models. To verify the effectiveness of the developed temporal convolution network (TCN) models, experiments with five different sets of initial parameters for the TCN model were determined by the output results of Q-learning computation. The experimental results showed that the TCN accuracy for 168 h wind power prediction reached a mean absolute percentage error of 1.41%. In evaluating the effectiveness of selection of hyperparameters for the proposed model, the performance of four DLN-based prediction models for power forecasting—TCN, long short-term memory (LSTM), recurrent neural network (RNN), and gated recurrence unit (GRU) models—were compared. The overall detection accuracy of the TCN model exhibited higher prediction accuracy compared to canonical recurrent networks (i.e., the GRU, LSTM, and RNN models)." @default.
- W4285392382 created "2022-07-14" @default.
- W4285392382 creator A5000424687 @default.
- W4285392382 creator A5009351946 @default.
- W4285392382 creator A5014758963 @default.
- W4285392382 creator A5055175188 @default.
- W4285392382 creator A5066005106 @default.
- W4285392382 creator A5089354361 @default.
- W4285392382 date "2022-07-13" @default.
- W4285392382 modified "2023-10-14" @default.
- W4285392382 title "Deep-Learning Model Selection and Parameter Estimation from a Wind Power Farm in Taiwan" @default.
- W4285392382 cites W1600744878 @default.
- W4285392382 cites W2287279778 @default.
- W4285392382 cites W2550143307 @default.
- W4285392382 cites W2794209590 @default.
- W4285392382 cites W2884166952 @default.
- W4285392382 cites W2945236236 @default.
- W4285392382 cites W2953352227 @default.
- W4285392382 cites W3001036220 @default.
- W4285392382 cites W3019747105 @default.
- W4285392382 cites W3025111165 @default.
- W4285392382 cites W3083758632 @default.
- W4285392382 cites W3107023852 @default.
- W4285392382 cites W3112388352 @default.
- W4285392382 cites W3113909459 @default.
- W4285392382 cites W3118645195 @default.
- W4285392382 cites W3126247501 @default.
- W4285392382 cites W3150017935 @default.
- W4285392382 cites W3159217042 @default.
- W4285392382 cites W3196636665 @default.
- W4285392382 cites W3209152735 @default.
- W4285392382 cites W3212323890 @default.
- W4285392382 cites W4200409353 @default.
- W4285392382 cites W4200436126 @default.
- W4285392382 doi "https://doi.org/10.3390/app12147067" @default.
- W4285392382 hasPublicationYear "2022" @default.
- W4285392382 type Work @default.
- W4285392382 citedByCount "1" @default.
- W4285392382 countsByYear W42853923822022 @default.
- W4285392382 crossrefType "journal-article" @default.
- W4285392382 hasAuthorship W4285392382A5000424687 @default.
- W4285392382 hasAuthorship W4285392382A5009351946 @default.
- W4285392382 hasAuthorship W4285392382A5014758963 @default.
- W4285392382 hasAuthorship W4285392382A5055175188 @default.
- W4285392382 hasAuthorship W4285392382A5066005106 @default.
- W4285392382 hasAuthorship W4285392382A5089354361 @default.
- W4285392382 hasBestOaLocation W42853923821 @default.
- W4285392382 hasConcept C108583219 @default.
- W4285392382 hasConcept C11413529 @default.
- W4285392382 hasConcept C119599485 @default.
- W4285392382 hasConcept C119857082 @default.
- W4285392382 hasConcept C127413603 @default.
- W4285392382 hasConcept C147168706 @default.
- W4285392382 hasConcept C154945302 @default.
- W4285392382 hasConcept C2776145597 @default.
- W4285392382 hasConcept C41008148 @default.
- W4285392382 hasConcept C45374587 @default.
- W4285392382 hasConcept C50644808 @default.
- W4285392382 hasConcept C78600449 @default.
- W4285392382 hasConcept C8642999 @default.
- W4285392382 hasConcept C93959086 @default.
- W4285392382 hasConceptScore W4285392382C108583219 @default.
- W4285392382 hasConceptScore W4285392382C11413529 @default.
- W4285392382 hasConceptScore W4285392382C119599485 @default.
- W4285392382 hasConceptScore W4285392382C119857082 @default.
- W4285392382 hasConceptScore W4285392382C127413603 @default.
- W4285392382 hasConceptScore W4285392382C147168706 @default.
- W4285392382 hasConceptScore W4285392382C154945302 @default.
- W4285392382 hasConceptScore W4285392382C2776145597 @default.
- W4285392382 hasConceptScore W4285392382C41008148 @default.
- W4285392382 hasConceptScore W4285392382C45374587 @default.
- W4285392382 hasConceptScore W4285392382C50644808 @default.
- W4285392382 hasConceptScore W4285392382C78600449 @default.
- W4285392382 hasConceptScore W4285392382C8642999 @default.
- W4285392382 hasConceptScore W4285392382C93959086 @default.
- W4285392382 hasFunder F4320322795 @default.
- W4285392382 hasIssue "14" @default.
- W4285392382 hasLocation W42853923821 @default.
- W4285392382 hasLocation W42853923822 @default.
- W4285392382 hasOpenAccess W4285392382 @default.
- W4285392382 hasPrimaryLocation W42853923821 @default.
- W4285392382 hasRelatedWork W3047644063 @default.
- W4285392382 hasRelatedWork W4210794429 @default.
- W4285392382 hasRelatedWork W4223943233 @default.
- W4285392382 hasRelatedWork W4295309597 @default.
- W4285392382 hasRelatedWork W4312200629 @default.
- W4285392382 hasRelatedWork W4323894855 @default.
- W4285392382 hasRelatedWork W4360585206 @default.
- W4285392382 hasRelatedWork W4364306694 @default.
- W4285392382 hasRelatedWork W4380075502 @default.
- W4285392382 hasRelatedWork W4380086463 @default.
- W4285392382 hasVolume "12" @default.
- W4285392382 isParatext "false" @default.
- W4285392382 isRetracted "false" @default.
- W4285392382 workType "article" @default.