Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285392783> ?p ?o ?g. }
- W4285392783 abstract "We aimed to investigate the status of falls and to identify important risk factors for falls in persons with type 2 diabetes (T2D) including the non-elderly. Participants were 316 persons with T2D who were assessed for medical history, laboratory data and physical capabilities during hospitalization and given a questionnaire on falls one year after discharge. Two different statistical models, logistic regression and random forest classifier, were used to identify the important predictors of falls. The response rate to the survey was 72%; of the 226 respondents, there were 129 males and 97 females (median age 62 years). The fall rate during the first year after discharge was 19%. Logistic regression revealed that knee extension strength, fasting C-peptide (F-CPR) level and dorsiflexion strength were independent predictors of falls. The random forest classifier placed grip strength, F-CPR, knee extension strength, dorsiflexion strength and proliferative diabetic retinopathy among the 5 most important variables for falls. Lower extremity muscle weakness, elevated F-CPR levels and reduced grip strength were shown to be important risk factors for falls in T2D. Analysis by random forest can identify new risk factors for falls in addition to logistic regression." @default.
- W4285392783 created "2022-07-14" @default.
- W4285392783 creator A5007492003 @default.
- W4285392783 creator A5020696477 @default.
- W4285392783 creator A5021859804 @default.
- W4285392783 creator A5028962254 @default.
- W4285392783 creator A5029367635 @default.
- W4285392783 creator A5062011271 @default.
- W4285392783 creator A5065540166 @default.
- W4285392783 creator A5073588329 @default.
- W4285392783 creator A5078592101 @default.
- W4285392783 creator A5082465084 @default.
- W4285392783 creator A5090944310 @default.
- W4285392783 date "2022-07-13" @default.
- W4285392783 modified "2023-09-30" @default.
- W4285392783 title "Exploratory analysis using machine learning of predictive factors for falls in type 2 diabetes" @default.
- W4285392783 cites W1529495977 @default.
- W4285392783 cites W1564856129 @default.
- W4285392783 cites W1842290562 @default.
- W4285392783 cites W1909155697 @default.
- W4285392783 cites W2000720317 @default.
- W4285392783 cites W2002607723 @default.
- W4285392783 cites W2015146700 @default.
- W4285392783 cites W2021672701 @default.
- W4285392783 cites W2034043546 @default.
- W4285392783 cites W2036596456 @default.
- W4285392783 cites W2037668591 @default.
- W4285392783 cites W2047006786 @default.
- W4285392783 cites W2058493278 @default.
- W4285392783 cites W2067403567 @default.
- W4285392783 cites W2068186511 @default.
- W4285392783 cites W2069957407 @default.
- W4285392783 cites W2075937340 @default.
- W4285392783 cites W2099704543 @default.
- W4285392783 cites W2104063796 @default.
- W4285392783 cites W2104357394 @default.
- W4285392783 cites W2109287386 @default.
- W4285392783 cites W2111735799 @default.
- W4285392783 cites W2113314764 @default.
- W4285392783 cites W2121647405 @default.
- W4285392783 cites W2123505753 @default.
- W4285392783 cites W2124822907 @default.
- W4285392783 cites W2127427656 @default.
- W4285392783 cites W2128814754 @default.
- W4285392783 cites W2129178038 @default.
- W4285392783 cites W2130693276 @default.
- W4285392783 cites W2131430447 @default.
- W4285392783 cites W2132900754 @default.
- W4285392783 cites W2136555832 @default.
- W4285392783 cites W2144070181 @default.
- W4285392783 cites W2152189242 @default.
- W4285392783 cites W2235610782 @default.
- W4285392783 cites W2261441533 @default.
- W4285392783 cites W2281377421 @default.
- W4285392783 cites W2469618663 @default.
- W4285392783 cites W2507340311 @default.
- W4285392783 cites W2542719835 @default.
- W4285392783 cites W2601577647 @default.
- W4285392783 cites W2614097988 @default.
- W4285392783 cites W2614631379 @default.
- W4285392783 cites W2734626522 @default.
- W4285392783 cites W2735823875 @default.
- W4285392783 cites W2736872388 @default.
- W4285392783 cites W2753390782 @default.
- W4285392783 cites W2761181345 @default.
- W4285392783 cites W2787337229 @default.
- W4285392783 cites W2911964244 @default.
- W4285392783 cites W2976095271 @default.
- W4285392783 cites W3015188018 @default.
- W4285392783 cites W4220879005 @default.
- W4285392783 doi "https://doi.org/10.1038/s41598-022-15224-4" @default.
- W4285392783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35831378" @default.
- W4285392783 hasPublicationYear "2022" @default.
- W4285392783 type Work @default.
- W4285392783 citedByCount "3" @default.
- W4285392783 countsByYear W42853927832023 @default.
- W4285392783 crossrefType "journal-article" @default.
- W4285392783 hasAuthorship W4285392783A5007492003 @default.
- W4285392783 hasAuthorship W4285392783A5020696477 @default.
- W4285392783 hasAuthorship W4285392783A5021859804 @default.
- W4285392783 hasAuthorship W4285392783A5028962254 @default.
- W4285392783 hasAuthorship W4285392783A5029367635 @default.
- W4285392783 hasAuthorship W4285392783A5062011271 @default.
- W4285392783 hasAuthorship W4285392783A5065540166 @default.
- W4285392783 hasAuthorship W4285392783A5073588329 @default.
- W4285392783 hasAuthorship W4285392783A5078592101 @default.
- W4285392783 hasAuthorship W4285392783A5082465084 @default.
- W4285392783 hasAuthorship W4285392783A5090944310 @default.
- W4285392783 hasBestOaLocation W42853927831 @default.
- W4285392783 hasConcept C119857082 @default.
- W4285392783 hasConcept C126322002 @default.
- W4285392783 hasConcept C134018914 @default.
- W4285392783 hasConcept C151956035 @default.
- W4285392783 hasConcept C152877465 @default.
- W4285392783 hasConcept C169258074 @default.
- W4285392783 hasConcept C1862650 @default.
- W4285392783 hasConcept C2777180221 @default.
- W4285392783 hasConcept C2777433710 @default.
- W4285392783 hasConcept C41008148 @default.
- W4285392783 hasConcept C555293320 @default.