Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285392803> ?p ?o ?g. }
- W4285392803 endingPage "8584" @default.
- W4285392803 startingPage "8584" @default.
- W4285392803 abstract "Energy conservation in buildings has increasingly become a hot issue for the Chinese government. Compared to deterministic load prediction, probabilistic load forecasting is more suitable for long-term planning and management of building energy consumption. In this study, we propose a probabilistic load-forecasting method for daily and weekly indoor load. The methodology is based on the long short-term memory (LSTM) model and penalized quantile regression (PQR). A comprehensive analysis for a time period of a year is conducted using the proposed method, and back propagation neural networks (BPNN), support vector machine (SVM), and random forest are applied as reference models. Point prediction as well as interval prediction are adopted to roundly test the prediction performance of the proposed model. Results show that LSTM-PQR has superior performance over the other three models and has improvements ranging from 6.4% to 20.9% for PICP compared with other models. This work indicates that the proposed method fits well with probabilistic load forecasting, which could promise to guide the management of building sustainability in a future carbon neutral scenario." @default.
- W4285392803 created "2022-07-14" @default.
- W4285392803 creator A5050183215 @default.
- W4285392803 date "2022-07-13" @default.
- W4285392803 modified "2023-09-27" @default.
- W4285392803 title "A Novel Interval Energy-Forecasting Method for Sustainable Building Management Based on Deep Learning" @default.
- W4285392803 cites W1786339085 @default.
- W4285392803 cites W1973706763 @default.
- W4285392803 cites W2000424045 @default.
- W4285392803 cites W2000548672 @default.
- W4285392803 cites W2017116800 @default.
- W4285392803 cites W2057936307 @default.
- W4285392803 cites W2064675550 @default.
- W4285392803 cites W2077037475 @default.
- W4285392803 cites W2079784202 @default.
- W4285392803 cites W2083020303 @default.
- W4285392803 cites W2088357067 @default.
- W4285392803 cites W2114534220 @default.
- W4285392803 cites W2141484579 @default.
- W4285392803 cites W2175143722 @default.
- W4285392803 cites W2232980359 @default.
- W4285392803 cites W2269856308 @default.
- W4285392803 cites W2287564275 @default.
- W4285392803 cites W2295959395 @default.
- W4285392803 cites W2466410195 @default.
- W4285392803 cites W2505637618 @default.
- W4285392803 cites W2568304936 @default.
- W4285392803 cites W2593995792 @default.
- W4285392803 cites W2594787851 @default.
- W4285392803 cites W2595984151 @default.
- W4285392803 cites W2604099671 @default.
- W4285392803 cites W2622052728 @default.
- W4285392803 cites W2746020449 @default.
- W4285392803 cites W2747687902 @default.
- W4285392803 cites W2756883720 @default.
- W4285392803 cites W2783038087 @default.
- W4285392803 cites W2791111686 @default.
- W4285392803 cites W2792344217 @default.
- W4285392803 cites W2884234184 @default.
- W4285392803 cites W2886880246 @default.
- W4285392803 cites W2890356059 @default.
- W4285392803 cites W2898149370 @default.
- W4285392803 cites W2903925216 @default.
- W4285392803 cites W2915043045 @default.
- W4285392803 cites W2917950237 @default.
- W4285392803 cites W2937654745 @default.
- W4285392803 cites W2990152487 @default.
- W4285392803 cites W3000313095 @default.
- W4285392803 cites W3021001355 @default.
- W4285392803 cites W3153117021 @default.
- W4285392803 cites W4283272896 @default.
- W4285392803 doi "https://doi.org/10.3390/su14148584" @default.
- W4285392803 hasPublicationYear "2022" @default.
- W4285392803 type Work @default.
- W4285392803 citedByCount "5" @default.
- W4285392803 countsByYear W42853928032022 @default.
- W4285392803 countsByYear W42853928032023 @default.
- W4285392803 crossrefType "journal-article" @default.
- W4285392803 hasAuthorship W4285392803A5050183215 @default.
- W4285392803 hasBestOaLocation W42853928031 @default.
- W4285392803 hasConcept C103402496 @default.
- W4285392803 hasConcept C110332635 @default.
- W4285392803 hasConcept C114614502 @default.
- W4285392803 hasConcept C119857082 @default.
- W4285392803 hasConcept C121332964 @default.
- W4285392803 hasConcept C122282355 @default.
- W4285392803 hasConcept C12267149 @default.
- W4285392803 hasConcept C154945302 @default.
- W4285392803 hasConcept C169258074 @default.
- W4285392803 hasConcept C2776400721 @default.
- W4285392803 hasConcept C2778067643 @default.
- W4285392803 hasConcept C33923547 @default.
- W4285392803 hasConcept C41008148 @default.
- W4285392803 hasConcept C49937458 @default.
- W4285392803 hasConcept C50644808 @default.
- W4285392803 hasConcept C61797465 @default.
- W4285392803 hasConcept C62520636 @default.
- W4285392803 hasConcept C63817138 @default.
- W4285392803 hasConceptScore W4285392803C103402496 @default.
- W4285392803 hasConceptScore W4285392803C110332635 @default.
- W4285392803 hasConceptScore W4285392803C114614502 @default.
- W4285392803 hasConceptScore W4285392803C119857082 @default.
- W4285392803 hasConceptScore W4285392803C121332964 @default.
- W4285392803 hasConceptScore W4285392803C122282355 @default.
- W4285392803 hasConceptScore W4285392803C12267149 @default.
- W4285392803 hasConceptScore W4285392803C154945302 @default.
- W4285392803 hasConceptScore W4285392803C169258074 @default.
- W4285392803 hasConceptScore W4285392803C2776400721 @default.
- W4285392803 hasConceptScore W4285392803C2778067643 @default.
- W4285392803 hasConceptScore W4285392803C33923547 @default.
- W4285392803 hasConceptScore W4285392803C41008148 @default.
- W4285392803 hasConceptScore W4285392803C49937458 @default.
- W4285392803 hasConceptScore W4285392803C50644808 @default.
- W4285392803 hasConceptScore W4285392803C61797465 @default.
- W4285392803 hasConceptScore W4285392803C62520636 @default.
- W4285392803 hasConceptScore W4285392803C63817138 @default.
- W4285392803 hasIssue "14" @default.
- W4285392803 hasLocation W42853928031 @default.