Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285393856> ?p ?o ?g. }
- W4285393856 endingPage "3714" @default.
- W4285393856 startingPage "3701" @default.
- W4285393856 abstract "Noise removal is a classic problem. Most researchers focus on Gaussian noise removal due to the regularity of the noise distribution, while mixed noise removal is always challenging because of the uncertainty of the noise distribution. Mixtures of additive white Gaussian noise (AWGN) with salt-and-pepper impulse noise (SPIN) and mixtures of AWGN with random-valued impulse noise (RVIN) are typical examples of mixed noise. Most mixed noise removal methods are effective in the removal of mixed AWGN and SPIN, but perform poorly in the removal of AWGN and RVIN. The main reason is the randomness of RVIN, which leads to poor denoising performance when the RVIN is strong. In this paper, an improved nonlocal means-based correction strategy (INS) is proposed. In INS, an improved nonlocal means strategy is applied to replace the impulse noise pixels to make the mixed noise obey an approximate Gaussian distribution. To prove the validity of INS, a convolutional neural network (CNN) in combination with INS (CNNINS) is applied to remove mixed noise. Experimental results are used to compare the proposed CNNINS with the most advanced mixed noise removal methods." @default.
- W4285393856 created "2022-07-14" @default.
- W4285393856 creator A5009585171 @default.
- W4285393856 creator A5033384887 @default.
- W4285393856 creator A5037129397 @default.
- W4285393856 date "2022-07-13" @default.
- W4285393856 modified "2023-10-16" @default.
- W4285393856 title "An improved nonlocal means‐based correction strategy for mixed noise removal" @default.
- W4285393856 cites W1560941629 @default.
- W4285393856 cites W1978749115 @default.
- W4285393856 cites W2000545460 @default.
- W4285393856 cites W2037642501 @default.
- W4285393856 cites W2056370875 @default.
- W4285393856 cites W2061326794 @default.
- W4285393856 cites W2094903560 @default.
- W4285393856 cites W2124139674 @default.
- W4285393856 cites W2126773133 @default.
- W4285393856 cites W2136043254 @default.
- W4285393856 cites W2136396015 @default.
- W4285393856 cites W2141983208 @default.
- W4285393856 cites W2148358298 @default.
- W4285393856 cites W2150427434 @default.
- W4285393856 cites W2159558889 @default.
- W4285393856 cites W2160547390 @default.
- W4285393856 cites W2160924560 @default.
- W4285393856 cites W2162276649 @default.
- W4285393856 cites W2169733476 @default.
- W4285393856 cites W2194775991 @default.
- W4285393856 cites W2508457857 @default.
- W4285393856 cites W2593128366 @default.
- W4285393856 cites W2809440204 @default.
- W4285393856 cites W2809980976 @default.
- W4285393856 cites W2810331563 @default.
- W4285393856 cites W2884752167 @default.
- W4285393856 cites W2935891649 @default.
- W4285393856 cites W2947558314 @default.
- W4285393856 cites W2947827328 @default.
- W4285393856 cites W2963686971 @default.
- W4285393856 cites W2964736125 @default.
- W4285393856 cites W2975941751 @default.
- W4285393856 cites W2987190105 @default.
- W4285393856 cites W3036790102 @default.
- W4285393856 cites W3136755176 @default.
- W4285393856 doi "https://doi.org/10.1049/ipr2.12586" @default.
- W4285393856 hasPublicationYear "2022" @default.
- W4285393856 type Work @default.
- W4285393856 citedByCount "0" @default.
- W4285393856 crossrefType "journal-article" @default.
- W4285393856 hasAuthorship W4285393856A5009585171 @default.
- W4285393856 hasAuthorship W4285393856A5033384887 @default.
- W4285393856 hasAuthorship W4285393856A5037129397 @default.
- W4285393856 hasBestOaLocation W42853938561 @default.
- W4285393856 hasConcept C105795698 @default.
- W4285393856 hasConcept C112633086 @default.
- W4285393856 hasConcept C113660513 @default.
- W4285393856 hasConcept C11413529 @default.
- W4285393856 hasConcept C115961682 @default.
- W4285393856 hasConcept C125112378 @default.
- W4285393856 hasConcept C127372701 @default.
- W4285393856 hasConcept C154945302 @default.
- W4285393856 hasConcept C160633673 @default.
- W4285393856 hasConcept C163294075 @default.
- W4285393856 hasConcept C169334058 @default.
- W4285393856 hasConcept C182163834 @default.
- W4285393856 hasConcept C187612029 @default.
- W4285393856 hasConcept C200378446 @default.
- W4285393856 hasConcept C29265498 @default.
- W4285393856 hasConcept C33923547 @default.
- W4285393856 hasConcept C41008148 @default.
- W4285393856 hasConcept C4199805 @default.
- W4285393856 hasConcept C55352655 @default.
- W4285393856 hasConcept C76155785 @default.
- W4285393856 hasConcept C9417928 @default.
- W4285393856 hasConcept C99498987 @default.
- W4285393856 hasConceptScore W4285393856C105795698 @default.
- W4285393856 hasConceptScore W4285393856C112633086 @default.
- W4285393856 hasConceptScore W4285393856C113660513 @default.
- W4285393856 hasConceptScore W4285393856C11413529 @default.
- W4285393856 hasConceptScore W4285393856C115961682 @default.
- W4285393856 hasConceptScore W4285393856C125112378 @default.
- W4285393856 hasConceptScore W4285393856C127372701 @default.
- W4285393856 hasConceptScore W4285393856C154945302 @default.
- W4285393856 hasConceptScore W4285393856C160633673 @default.
- W4285393856 hasConceptScore W4285393856C163294075 @default.
- W4285393856 hasConceptScore W4285393856C169334058 @default.
- W4285393856 hasConceptScore W4285393856C182163834 @default.
- W4285393856 hasConceptScore W4285393856C187612029 @default.
- W4285393856 hasConceptScore W4285393856C200378446 @default.
- W4285393856 hasConceptScore W4285393856C29265498 @default.
- W4285393856 hasConceptScore W4285393856C33923547 @default.
- W4285393856 hasConceptScore W4285393856C41008148 @default.
- W4285393856 hasConceptScore W4285393856C4199805 @default.
- W4285393856 hasConceptScore W4285393856C55352655 @default.
- W4285393856 hasConceptScore W4285393856C76155785 @default.
- W4285393856 hasConceptScore W4285393856C9417928 @default.
- W4285393856 hasConceptScore W4285393856C99498987 @default.
- W4285393856 hasFunder F4320321001 @default.
- W4285393856 hasFunder F4320322769 @default.