Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285394443> ?p ?o ?g. }
- W4285394443 endingPage "20015" @default.
- W4285394443 startingPage "19995" @default.
- W4285394443 abstract "Abstract This study investigates the capability of sequence-to-sequence machine learning (ML) architectures in an effort to develop streamflow forecasting tools for Canadian watersheds. Such tools are useful to inform local and region-specific water management and flood forecasting related activities. Two powerful deep-learning variants of the Recurrent Neural Network were investigated, namely the standard and attention-based encoder-decoder long short-term memory (LSTM) models. Both models were forced with past hydro-meteorological states and daily meteorological data with a look-back time window of several days. These models were tested for 10 different watersheds from the Ottawa River watershed, located within the Great Lakes Saint-Lawrence region of Canada, an economic powerhouse of the country. The results of training and testing phases suggest that both models are able to simulate overall hydrograph patterns well when compared to observational records. Between the two models, the attention model significantly outperforms the standard model in all watersheds, suggesting the importance and usefulness of the attention mechanism in ML architectures, not well explored for hydrological applications. The mean performance accuracy of the attention model on unseen data, when assessed in terms of mean Nash–Sutcliffe Efficiency and Kling-Gupta Efficiency is, respectively, found to be 0.985 and 0.954 for these watersheds. Streamflow forecasts with lead times of up to 5 days with the attention model demonstrate overall skillful performance with well above the benchmark accuracy of 70%. The results of the study suggest that the encoder–decoder LSTM, with attention mechanism, is a powerful modelling choice for developing streamflow forecasting systems for Canadian watersheds." @default.
- W4285394443 created "2022-07-14" @default.
- W4285394443 creator A5006146775 @default.
- W4285394443 creator A5013253334 @default.
- W4285394443 creator A5033365689 @default.
- W4285394443 creator A5044037051 @default.
- W4285394443 creator A5051623329 @default.
- W4285394443 creator A5052819111 @default.
- W4285394443 creator A5074742045 @default.
- W4285394443 date "2022-07-13" @default.
- W4285394443 modified "2023-10-03" @default.
- W4285394443 title "Streamflow modelling and forecasting for Canadian watersheds using LSTM networks with attention mechanism" @default.
- W4285394443 cites W169873142 @default.
- W4285394443 cites W1999550839 @default.
- W4285394443 cites W2011301426 @default.
- W4285394443 cites W2013679974 @default.
- W4285394443 cites W2026521426 @default.
- W4285394443 cites W2033904036 @default.
- W4285394443 cites W2046334024 @default.
- W4285394443 cites W2054163366 @default.
- W4285394443 cites W2058998445 @default.
- W4285394443 cites W2059704524 @default.
- W4285394443 cites W2061377831 @default.
- W4285394443 cites W2061471591 @default.
- W4285394443 cites W2064675550 @default.
- W4285394443 cites W2070909614 @default.
- W4285394443 cites W2102079655 @default.
- W4285394443 cites W2107878631 @default.
- W4285394443 cites W2122389133 @default.
- W4285394443 cites W2138763184 @default.
- W4285394443 cites W2153754330 @default.
- W4285394443 cites W2157331557 @default.
- W4285394443 cites W2161540146 @default.
- W4285394443 cites W2277086328 @default.
- W4285394443 cites W2342249984 @default.
- W4285394443 cites W2510855144 @default.
- W4285394443 cites W2766736793 @default.
- W4285394443 cites W2792919287 @default.
- W4285394443 cites W2800819102 @default.
- W4285394443 cites W2898661956 @default.
- W4285394443 cites W2898791292 @default.
- W4285394443 cites W2942300526 @default.
- W4285394443 cites W2951276077 @default.
- W4285394443 cites W2984709157 @default.
- W4285394443 cites W2989857225 @default.
- W4285394443 cites W2995149074 @default.
- W4285394443 cites W2998081509 @default.
- W4285394443 cites W2998268303 @default.
- W4285394443 cites W3003741609 @default.
- W4285394443 cites W3018770027 @default.
- W4285394443 cites W3021538729 @default.
- W4285394443 cites W3088901673 @default.
- W4285394443 cites W3092026988 @default.
- W4285394443 cites W3099487920 @default.
- W4285394443 cites W3099878876 @default.
- W4285394443 cites W3136179920 @default.
- W4285394443 cites W3150635270 @default.
- W4285394443 cites W3168719587 @default.
- W4285394443 cites W3186291936 @default.
- W4285394443 doi "https://doi.org/10.1007/s00521-022-07523-8" @default.
- W4285394443 hasPublicationYear "2022" @default.
- W4285394443 type Work @default.
- W4285394443 citedByCount "17" @default.
- W4285394443 countsByYear W42853944432022 @default.
- W4285394443 countsByYear W42853944432023 @default.
- W4285394443 crossrefType "journal-article" @default.
- W4285394443 hasAuthorship W4285394443A5006146775 @default.
- W4285394443 hasAuthorship W4285394443A5013253334 @default.
- W4285394443 hasAuthorship W4285394443A5033365689 @default.
- W4285394443 hasAuthorship W4285394443A5044037051 @default.
- W4285394443 hasAuthorship W4285394443A5051623329 @default.
- W4285394443 hasAuthorship W4285394443A5052819111 @default.
- W4285394443 hasAuthorship W4285394443A5074742045 @default.
- W4285394443 hasBestOaLocation W42853944431 @default.
- W4285394443 hasConcept C119857082 @default.
- W4285394443 hasConcept C126645576 @default.
- W4285394443 hasConcept C150547873 @default.
- W4285394443 hasConcept C154936535 @default.
- W4285394443 hasConcept C154945302 @default.
- W4285394443 hasConcept C166957645 @default.
- W4285394443 hasConcept C183195422 @default.
- W4285394443 hasConcept C185798385 @default.
- W4285394443 hasConcept C205649164 @default.
- W4285394443 hasConcept C2778112365 @default.
- W4285394443 hasConcept C41008148 @default.
- W4285394443 hasConcept C50644808 @default.
- W4285394443 hasConcept C53739315 @default.
- W4285394443 hasConcept C54355233 @default.
- W4285394443 hasConcept C58640448 @default.
- W4285394443 hasConcept C74256435 @default.
- W4285394443 hasConcept C86803240 @default.
- W4285394443 hasConceptScore W4285394443C119857082 @default.
- W4285394443 hasConceptScore W4285394443C126645576 @default.
- W4285394443 hasConceptScore W4285394443C150547873 @default.
- W4285394443 hasConceptScore W4285394443C154936535 @default.
- W4285394443 hasConceptScore W4285394443C154945302 @default.
- W4285394443 hasConceptScore W4285394443C166957645 @default.
- W4285394443 hasConceptScore W4285394443C183195422 @default.