Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285395311> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4285395311 endingPage "7080" @default.
- W4285395311 startingPage "7080" @default.
- W4285395311 abstract "In 2020, according to the publications of both the Global Cancer Observatory (GCO) and the World Health Organization (WHO), breast cancer (BC) represents one of the highest prevalent cancers in women worldwide. Almost 47% of the world’s 100,000 people are diagnosed with breast cancer, among females. Moreover, BC prevails among 38.8% of Egyptian women having cancer. Current deep learning developments have shown the common usage of deep convolutional neural networks (CNNs) for analyzing medical images. Unlike the randomly initialized ones, pre-trained natural image database (ImageNet)-based CNN models may become successfully fine-tuned to obtain improved findings. To conduct the automatic detection of BC by the CBIS-DDSM dataset, a CNN model, namely CoroNet, is proposed. It relies on the Xception architecture, which has been pre-trained on the ImageNet dataset and has been fully trained on whole-image BC according to mammograms. The convolutional design method is used in this paper, since it performs better than the other methods. On the prepared dataset, CoroNet was trained and tested. Experiments show that in a four-class classification, it may attain an overall accuracy of 94.92% (benign mass vs. malignant mass) and (benign calcification vs. malignant calcification). CoroNet has a classification accuracy of 88.67% for the two-class cases (calcifications and masses). The paper concluded that there are promising outcomes that could be improved because more training data are available." @default.
- W4285395311 created "2022-07-14" @default.
- W4285395311 creator A5043303783 @default.
- W4285395311 creator A5047655264 @default.
- W4285395311 creator A5090065078 @default.
- W4285395311 date "2022-07-13" @default.
- W4285395311 modified "2023-10-04" @default.
- W4285395311 title "CoroNet: Deep Neural Network-Based End-to-End Training for Breast Cancer Diagnosis" @default.
- W4285395311 cites W1822639386 @default.
- W4285395311 cites W1917647701 @default.
- W4285395311 cites W1997495901 @default.
- W4285395311 cites W2020506948 @default.
- W4285395311 cites W2030069582 @default.
- W4285395311 cites W2096663717 @default.
- W4285395311 cites W2113641540 @default.
- W4285395311 cites W2120580182 @default.
- W4285395311 cites W2148516878 @default.
- W4285395311 cites W2149291062 @default.
- W4285395311 cites W2157117929 @default.
- W4285395311 cites W2163973672 @default.
- W4285395311 cites W2583337654 @default.
- W4285395311 cites W2604957907 @default.
- W4285395311 cites W2605260836 @default.
- W4285395311 cites W2618530766 @default.
- W4285395311 cites W2776937175 @default.
- W4285395311 cites W2785593065 @default.
- W4285395311 cites W2890596001 @default.
- W4285395311 cites W2908052439 @default.
- W4285395311 cites W2993303538 @default.
- W4285395311 cites W2998175747 @default.
- W4285395311 cites W3006463225 @default.
- W4285395311 cites W3023405735 @default.
- W4285395311 cites W3033616466 @default.
- W4285395311 cites W3100321043 @default.
- W4285395311 cites W3128646645 @default.
- W4285395311 cites W41027960 @default.
- W4285395311 cites W4220948352 @default.
- W4285395311 doi "https://doi.org/10.3390/app12147080" @default.
- W4285395311 hasPublicationYear "2022" @default.
- W4285395311 type Work @default.
- W4285395311 citedByCount "12" @default.
- W4285395311 countsByYear W42853953112022 @default.
- W4285395311 countsByYear W42853953112023 @default.
- W4285395311 crossrefType "journal-article" @default.
- W4285395311 hasAuthorship W4285395311A5043303783 @default.
- W4285395311 hasAuthorship W4285395311A5047655264 @default.
- W4285395311 hasAuthorship W4285395311A5090065078 @default.
- W4285395311 hasBestOaLocation W42853953111 @default.
- W4285395311 hasConcept C108583219 @default.
- W4285395311 hasConcept C119857082 @default.
- W4285395311 hasConcept C121608353 @default.
- W4285395311 hasConcept C126322002 @default.
- W4285395311 hasConcept C153180895 @default.
- W4285395311 hasConcept C154945302 @default.
- W4285395311 hasConcept C2777212361 @default.
- W4285395311 hasConcept C41008148 @default.
- W4285395311 hasConcept C50644808 @default.
- W4285395311 hasConcept C530470458 @default.
- W4285395311 hasConcept C71924100 @default.
- W4285395311 hasConcept C74296488 @default.
- W4285395311 hasConcept C81363708 @default.
- W4285395311 hasConceptScore W4285395311C108583219 @default.
- W4285395311 hasConceptScore W4285395311C119857082 @default.
- W4285395311 hasConceptScore W4285395311C121608353 @default.
- W4285395311 hasConceptScore W4285395311C126322002 @default.
- W4285395311 hasConceptScore W4285395311C153180895 @default.
- W4285395311 hasConceptScore W4285395311C154945302 @default.
- W4285395311 hasConceptScore W4285395311C2777212361 @default.
- W4285395311 hasConceptScore W4285395311C41008148 @default.
- W4285395311 hasConceptScore W4285395311C50644808 @default.
- W4285395311 hasConceptScore W4285395311C530470458 @default.
- W4285395311 hasConceptScore W4285395311C71924100 @default.
- W4285395311 hasConceptScore W4285395311C74296488 @default.
- W4285395311 hasConceptScore W4285395311C81363708 @default.
- W4285395311 hasIssue "14" @default.
- W4285395311 hasLocation W42853953111 @default.
- W4285395311 hasLocation W42853953112 @default.
- W4285395311 hasOpenAccess W4285395311 @default.
- W4285395311 hasPrimaryLocation W42853953111 @default.
- W4285395311 hasRelatedWork W2731899572 @default.
- W4285395311 hasRelatedWork W2999805992 @default.
- W4285395311 hasRelatedWork W3116150086 @default.
- W4285395311 hasRelatedWork W3133861977 @default.
- W4285395311 hasRelatedWork W4200173597 @default.
- W4285395311 hasRelatedWork W4223943233 @default.
- W4285395311 hasRelatedWork W4291897433 @default.
- W4285395311 hasRelatedWork W4312417841 @default.
- W4285395311 hasRelatedWork W4321369474 @default.
- W4285395311 hasRelatedWork W4380075502 @default.
- W4285395311 hasVolume "12" @default.
- W4285395311 isParatext "false" @default.
- W4285395311 isRetracted "false" @default.
- W4285395311 workType "article" @default.