Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285395910> ?p ?o ?g. }
- W4285395910 endingPage "408" @default.
- W4285395910 startingPage "388" @default.
- W4285395910 abstract "Brands and consumers alike have become creators and distributors of digital words, thus generating increasing interest in insights to be gained from text-based content. This work develops an algorithm to identify textual paralanguage, defined as nonverbal parts of speech expressed in online communication. The authors develop and validate a paralanguage classifier (called PARA) using social media data from Twitter, YouTube, and Instagram (N = 1,241,489 posts). Using auditory, tactile, and visual properties of text, PARA detects nonverbal communication cues, aspects of text often neglected by other word-based sentiment lexica. This work is the first to reveal the importance of textual paralanguage as a critical indicator of sentiment valence and intensity. The authors further demonstrate that automatically detected textual paralanguage can predict consumer engagement above and beyond existing text analytics tools. The algorithm is designed for researchers, scholars, and practitioners seeking to optimize marketing communications and offers a methodological advancement to quantify the importance of not only what is said verbally but how it is said nonverbally." @default.
- W4285395910 created "2022-07-14" @default.
- W4285395910 creator A5053511774 @default.
- W4285395910 creator A5070666984 @default.
- W4285395910 creator A5083455588 @default.
- W4285395910 date "2022-11-20" @default.
- W4285395910 modified "2023-10-14" @default.
- W4285395910 title "Paralanguage Classifier (PARA): An Algorithm for Automatic Coding of Paralinguistic Nonverbal Parts of Speech in Text" @default.
- W4285395910 cites W1528045197 @default.
- W4285395910 cites W1546555761 @default.
- W4285395910 cites W1823651326 @default.
- W4285395910 cites W1980399432 @default.
- W4285395910 cites W2005885879 @default.
- W4285395910 cites W2018493666 @default.
- W4285395910 cites W2023736093 @default.
- W4285395910 cites W2044636434 @default.
- W4285395910 cites W2052122479 @default.
- W4285395910 cites W2053068119 @default.
- W4285395910 cites W2061289966 @default.
- W4285395910 cites W2079839617 @default.
- W4285395910 cites W2086157089 @default.
- W4285395910 cites W2096472197 @default.
- W4285395910 cites W2099366530 @default.
- W4285395910 cites W2099813784 @default.
- W4285395910 cites W2103242737 @default.
- W4285395910 cites W2108204051 @default.
- W4285395910 cites W2118036999 @default.
- W4285395910 cites W2119192275 @default.
- W4285395910 cites W2125679304 @default.
- W4285395910 cites W2130852771 @default.
- W4285395910 cites W2135046866 @default.
- W4285395910 cites W2145855348 @default.
- W4285395910 cites W2152354174 @default.
- W4285395910 cites W2157289081 @default.
- W4285395910 cites W2261525379 @default.
- W4285395910 cites W2332665118 @default.
- W4285395910 cites W2337199441 @default.
- W4285395910 cites W2470622704 @default.
- W4285395910 cites W2508526766 @default.
- W4285395910 cites W2517471910 @default.
- W4285395910 cites W2521112083 @default.
- W4285395910 cites W2527730690 @default.
- W4285395910 cites W2567289819 @default.
- W4285395910 cites W2570774740 @default.
- W4285395910 cites W2583012190 @default.
- W4285395910 cites W2588949617 @default.
- W4285395910 cites W2599073956 @default.
- W4285395910 cites W2612769033 @default.
- W4285395910 cites W2749818146 @default.
- W4285395910 cites W2757917007 @default.
- W4285395910 cites W2761970766 @default.
- W4285395910 cites W2767143098 @default.
- W4285395910 cites W2783148606 @default.
- W4285395910 cites W2786306177 @default.
- W4285395910 cites W2788967885 @default.
- W4285395910 cites W2797060011 @default.
- W4285395910 cites W2808003960 @default.
- W4285395910 cites W2898339904 @default.
- W4285395910 cites W2901008555 @default.
- W4285395910 cites W2908893473 @default.
- W4285395910 cites W2913549175 @default.
- W4285395910 cites W2951293442 @default.
- W4285395910 cites W2959375352 @default.
- W4285395910 cites W2970167095 @default.
- W4285395910 cites W2994496426 @default.
- W4285395910 cites W3007826521 @default.
- W4285395910 cites W3008079375 @default.
- W4285395910 cites W3015337523 @default.
- W4285395910 cites W3019388422 @default.
- W4285395910 cites W3043760017 @default.
- W4285395910 cites W3043997204 @default.
- W4285395910 cites W3081854128 @default.
- W4285395910 cites W3106003309 @default.
- W4285395910 cites W3121315632 @default.
- W4285395910 cites W3123091093 @default.
- W4285395910 cites W3123399111 @default.
- W4285395910 cites W3124299433 @default.
- W4285395910 cites W3125993287 @default.
- W4285395910 cites W3151867831 @default.
- W4285395910 cites W3201959652 @default.
- W4285395910 cites W4205184193 @default.
- W4285395910 cites W4207027761 @default.
- W4285395910 cites W4249424355 @default.
- W4285395910 cites W4250420823 @default.
- W4285395910 cites W4254434816 @default.
- W4285395910 cites W4299627282 @default.
- W4285395910 cites W4312516176 @default.
- W4285395910 doi "https://doi.org/10.1177/00222437221116058" @default.
- W4285395910 hasPublicationYear "2022" @default.
- W4285395910 type Work @default.
- W4285395910 citedByCount "7" @default.
- W4285395910 countsByYear W42853959102022 @default.
- W4285395910 countsByYear W42853959102023 @default.
- W4285395910 crossrefType "journal-article" @default.
- W4285395910 hasAuthorship W4285395910A5053511774 @default.
- W4285395910 hasAuthorship W4285395910A5070666984 @default.
- W4285395910 hasAuthorship W4285395910A5083455588 @default.
- W4285395910 hasConcept C133378560 @default.