Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285397901> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4285397901 endingPage "1750" @default.
- W4285397901 startingPage "1750" @default.
- W4285397901 abstract "Polymer electrolyte membrane water electrolysis (PEMWE) is a promising technology for the production of hydrogen from fluctuating renewable energies [1]. Due to the scarcity of iridium that is commonly used as anode catalysts for the oxygen evolution reaction (OER), low anode loadings have become increasingly important [2]. Some low iridium loaded electrodes come with the drawback of a low electrical conductivity, which can be mitigated if the adjacent porous transport layer (PTL) has a similarly fine pore structure as that of the carbon black based microporous layers (MPL) used in PEM fuel cells [3]. First developments of titanium MPLs for PEMWE were based on vacuum plasma spraying [4, 5]. In recent work, titanium MPLs have also been fabricated by powder sintering, however these MPLs are very thick (200-300 µm) [6] and thus are almost as thick as the complete PTL used in other work. In this work, we present a method to produce microporous layers for PEMWE anodes by a titanium powder sintering process. For this, we coat a titanium slurry on top of a commercial powder-sintered PTL substrate. The successive sintering step solidifies the MPL coating and forms a single component from the two layers. The effects of the sintering temperature on the surface morphology are investigated by scanning electron microscopy (SEM) top-view and cross-sectional imaging (see Figure 1). An analysis of the pore structure of the developed MPL/PTL composite through mercury intrusion porosimetry (MIP) reveals pore-sizes of approximately one order of magnitude below those of the PTL substrate. Electrochemical characterization is carried out in 5 cm 2 PEMWE single-cells with low-iridium loadings (0.2 mg/cm 2 ), measuring polarization curves up to 6 A/cm 2 and performing electrochemical impedance spectroscopy (EIS) measurements. Our study demonstrates the benefits of MPLs for highly efficient PEM water electrolyzers with low-iridium loadings, as a 15% lowered HFR and a slightly improved iR-free cell voltage can be observed for our MPL compared to the pristine PTL substrate without MPL. Further analysis will be conducted to disentangle the contribution of the MPL (surface) morphology and of its surface properties to the observed performance benefits. References: [1] A. Buttler, H. Spliethoff; Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review.; Renew. Sust. Energ. Rev. , 2018 , 82 , 2440-2454. [2] M. Bernt, A. Weiß, M. F. Tovini, H. El-Sayed, C. Schramm, J. Schröter, C. Gebauer, H. A. Gasteiger; Current Challenges in Catalyst Development for PEM Water Electrolyzers; Chem. Ing. Tech. , 2020 , 92 , 31-39. [3] M. Bernt, A. Siebel, H. A. Gasteiger; Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings.; J. Electrochem. Soc., 2018 , 165.5 , F305-F314. [4] P. Lettenmeier, S. Kolb, F. Burggraf, A. S. Gago, K. A. Friedrich; „Towards developing a backing layer for proton exchange membrane electrolyzers”; J. Power Sources , 2016 , 311 , 153-158. [5] J. K. Lee, C. Lee, K. F. Fahy, P. J. Kim, J. M. LaManna, E. Baltic, D. L. Jacobson, D. S. Hussey, S. Stiber, A. S. Gago, K. A. Friedrich, A. Bazylak; “Spatially graded porous transport layers for gas evolving electrochemical energy conversion: High performance polymer electrolyte membrane electrolyzers”; Energy Convers. Manag , 2020 , 226 , 113545. [6] T. Schuler, J. M. Ciccone, B. Krentscher, F. Marone, C. Peter, T. J. Schmidt, F. N. Büchi; “Hierarchically structured porous transport layers for polymer electrolyte water electrolysis”; Adv. Energy Mater. , 2020 , 10.2 , 1903216. Acknowledgements: This work was funded by the German Federal Ministry of Education and Research (BMBF) in the framework of the Kopernikus P2X project (funding number 03SFK2V0-2). Figure 1" @default.
- W4285397901 created "2022-07-14" @default.
- W4285397901 creator A5001670145 @default.
- W4285397901 creator A5041752845 @default.
- W4285397901 creator A5065288335 @default.
- W4285397901 creator A5088146443 @default.
- W4285397901 date "2022-07-07" @default.
- W4285397901 modified "2023-09-25" @default.
- W4285397901 title "Developing Microporous Transport Layers for Polymer Electrolyte Membrane (PEM) Water Electrolyzer Anodes" @default.
- W4285397901 doi "https://doi.org/10.1149/ma2022-01391750mtgabs" @default.
- W4285397901 hasPublicationYear "2022" @default.
- W4285397901 type Work @default.
- W4285397901 citedByCount "0" @default.
- W4285397901 crossrefType "journal-article" @default.
- W4285397901 hasAuthorship W4285397901A5001670145 @default.
- W4285397901 hasAuthorship W4285397901A5041752845 @default.
- W4285397901 hasAuthorship W4285397901A5065288335 @default.
- W4285397901 hasAuthorship W4285397901A5088146443 @default.
- W4285397901 hasConcept C105569014 @default.
- W4285397901 hasConcept C114873805 @default.
- W4285397901 hasConcept C127413603 @default.
- W4285397901 hasConcept C147789679 @default.
- W4285397901 hasConcept C159985019 @default.
- W4285397901 hasConcept C163127949 @default.
- W4285397901 hasConcept C17525397 @default.
- W4285397901 hasConcept C185592680 @default.
- W4285397901 hasConcept C191897082 @default.
- W4285397901 hasConcept C192562407 @default.
- W4285397901 hasConcept C26771246 @default.
- W4285397901 hasConcept C2777581544 @default.
- W4285397901 hasConcept C2781448156 @default.
- W4285397901 hasConcept C42360764 @default.
- W4285397901 hasConcept C48256821 @default.
- W4285397901 hasConcept C506065880 @default.
- W4285397901 hasConcept C6648577 @default.
- W4285397901 hasConcept C68801617 @default.
- W4285397901 hasConcept C86381522 @default.
- W4285397901 hasConcept C89395315 @default.
- W4285397901 hasConceptScore W4285397901C105569014 @default.
- W4285397901 hasConceptScore W4285397901C114873805 @default.
- W4285397901 hasConceptScore W4285397901C127413603 @default.
- W4285397901 hasConceptScore W4285397901C147789679 @default.
- W4285397901 hasConceptScore W4285397901C159985019 @default.
- W4285397901 hasConceptScore W4285397901C163127949 @default.
- W4285397901 hasConceptScore W4285397901C17525397 @default.
- W4285397901 hasConceptScore W4285397901C185592680 @default.
- W4285397901 hasConceptScore W4285397901C191897082 @default.
- W4285397901 hasConceptScore W4285397901C192562407 @default.
- W4285397901 hasConceptScore W4285397901C26771246 @default.
- W4285397901 hasConceptScore W4285397901C2777581544 @default.
- W4285397901 hasConceptScore W4285397901C2781448156 @default.
- W4285397901 hasConceptScore W4285397901C42360764 @default.
- W4285397901 hasConceptScore W4285397901C48256821 @default.
- W4285397901 hasConceptScore W4285397901C506065880 @default.
- W4285397901 hasConceptScore W4285397901C6648577 @default.
- W4285397901 hasConceptScore W4285397901C68801617 @default.
- W4285397901 hasConceptScore W4285397901C86381522 @default.
- W4285397901 hasConceptScore W4285397901C89395315 @default.
- W4285397901 hasIssue "39" @default.
- W4285397901 hasLocation W42853979011 @default.
- W4285397901 hasOpenAccess W4285397901 @default.
- W4285397901 hasPrimaryLocation W42853979011 @default.
- W4285397901 hasRelatedWork W1538560499 @default.
- W4285397901 hasRelatedWork W1613913436 @default.
- W4285397901 hasRelatedWork W1861316601 @default.
- W4285397901 hasRelatedWork W2088055486 @default.
- W4285397901 hasRelatedWork W2130098649 @default.
- W4285397901 hasRelatedWork W2356323558 @default.
- W4285397901 hasRelatedWork W2358740592 @default.
- W4285397901 hasRelatedWork W2362539266 @default.
- W4285397901 hasRelatedWork W2387616028 @default.
- W4285397901 hasRelatedWork W3141449356 @default.
- W4285397901 hasVolume "MA2022-01" @default.
- W4285397901 isParatext "false" @default.
- W4285397901 isRetracted "false" @default.
- W4285397901 workType "article" @default.