Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285398439> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4285398439 endingPage "1253" @default.
- W4285398439 startingPage "1253" @default.
- W4285398439 abstract "Like supervias in the back end of line, and deep contact holes with an aspect ratio higher than sixty in 3D-NAND memory, higher aspect ratio patterning is one of the important issue in advanced semiconductor manufacturing. As with the difficulty of patterning, the technique of cleaning the nanostructure so that it does not affect the next process is also considered important. In semiconductor cleaning, chemicals such as HF and NH 4 OH that include reactant ions are used for cleaning the semiconductor surface. Ions in bulk aqueous solutions were shown either as structure making or breaking effects in Marcus’s study (Chem. Rev., 2009). The classification of ions as structure making or breaking was confirmed using 1 M solutions in nanotrenches (Vereecke, Micro. Eng., 2021). This shows there is an ion effect, and it can change properties between solution and material surface. The addition of structure breaking ions in HF solutions was used to decrease the etch rate of oxide between fins (Vereecke, Micro. Eng., 2022). Going further from Marcus’s study, we focused on pH and ion concentration in the addition of structure making ions. In the nanostructure, it was considered necessary to study because the surface properties may vary depending on the degree of structuring and the influence of the zeta potential depending on the concentration and pH of the ions. In this work, we used an in-situ ATR-FTIR (Attenuated Total Reflection – Fourier Transformed Infra-Red) spectroscopy technique (Nicolet iS50 AEM, Thermo Fisher Scientific, USA) to characterize the wetting of nanostructures embedded in a silica matrix by UPW (Ultra-Pure Water) and electrolyte solutions, and a streaming zeta potential analyzer (SURPASS3, Anton Paar, Austria) to characterize the surface potential of flat surfaces of the same material. Wetting in the nanostructures was characterized by an analysis of the ratio of the OH stretching peak to OH bending peak (Vrancken, Langmuir, 2016). Also, dissolution of CO 2 in the wetted nanostructures was monitored to compare the solubility and diffusivity in the nano-confined solutions with that in bulk solutions. In this experiment, we used dense arrays of silicon nanoholes in a PEALD SiO 2 matrix (depth of about 300 nm, diameter of about 20 nm, and pitch 90 nm) that were fabricated on Si wafers using arrays of nanostructures, as described in Vereecke (2021). Crystal drying, wetting with a solution, and applying CO 2 were performed in this order. HI, HBr, HCl were used for chemicals and pH 1, 2, 3, 4 was used for pH. Monitoring of the OH stretching to bending ratio showed little improvement in wetting as a function of pH between 1 to 4 as compared to UPW. Also, little difference was observed when changing the acid from HCl to HBr and HI, with anions of higher structure breaking properties according to Marcus (Chem. Rev., 2009). A higher CO 2 solubility and a lower CO 2 diffusivity were measured in the nanoconfined solutions as compared to bulk UPW, indicative of water structuring. A higher CO 2 solubility at pHs 2-3 as opposed to pH 1 and 4 may originate from the proximity to the isoelectric point. Results will be complemented with tests performed at the isoelectric point and pH 0, with 1 M solutions where structure breaking properties of the used anions are expected to be stronger and wetting might be improved." @default.
- W4285398439 created "2022-07-14" @default.
- W4285398439 creator A5011297808 @default.
- W4285398439 creator A5023778417 @default.
- W4285398439 creator A5034373550 @default.
- W4285398439 creator A5054637809 @default.
- W4285398439 creator A5061145610 @default.
- W4285398439 creator A5067090049 @default.
- W4285398439 creator A5087201919 @default.
- W4285398439 date "2022-07-07" @default.
- W4285398439 modified "2023-09-25" @default.
- W4285398439 title "Effect of pH and Ion Concentration on Wetting of Nanoholes and Water Structuring" @default.
- W4285398439 doi "https://doi.org/10.1149/ma2022-01281253mtgabs" @default.
- W4285398439 hasPublicationYear "2022" @default.
- W4285398439 type Work @default.
- W4285398439 citedByCount "0" @default.
- W4285398439 crossrefType "journal-article" @default.
- W4285398439 hasAuthorship W4285398439A5011297808 @default.
- W4285398439 hasAuthorship W4285398439A5023778417 @default.
- W4285398439 hasAuthorship W4285398439A5034373550 @default.
- W4285398439 hasAuthorship W4285398439A5054637809 @default.
- W4285398439 hasAuthorship W4285398439A5061145610 @default.
- W4285398439 hasAuthorship W4285398439A5067090049 @default.
- W4285398439 hasAuthorship W4285398439A5087201919 @default.
- W4285398439 hasConcept C108225325 @default.
- W4285398439 hasConcept C113196181 @default.
- W4285398439 hasConcept C127413603 @default.
- W4285398439 hasConcept C134514944 @default.
- W4285398439 hasConcept C145148216 @default.
- W4285398439 hasConcept C147789679 @default.
- W4285398439 hasConcept C155672457 @default.
- W4285398439 hasConcept C159985019 @default.
- W4285398439 hasConcept C160892712 @default.
- W4285398439 hasConcept C171250308 @default.
- W4285398439 hasConcept C178790620 @default.
- W4285398439 hasConcept C184651966 @default.
- W4285398439 hasConcept C185592680 @default.
- W4285398439 hasConcept C186187911 @default.
- W4285398439 hasConcept C191897082 @default.
- W4285398439 hasConcept C192562407 @default.
- W4285398439 hasConcept C2779851234 @default.
- W4285398439 hasConcept C42360764 @default.
- W4285398439 hasConcept C49040817 @default.
- W4285398439 hasConcept C49102809 @default.
- W4285398439 hasConcept C6556556 @default.
- W4285398439 hasConcept C86181022 @default.
- W4285398439 hasConceptScore W4285398439C108225325 @default.
- W4285398439 hasConceptScore W4285398439C113196181 @default.
- W4285398439 hasConceptScore W4285398439C127413603 @default.
- W4285398439 hasConceptScore W4285398439C134514944 @default.
- W4285398439 hasConceptScore W4285398439C145148216 @default.
- W4285398439 hasConceptScore W4285398439C147789679 @default.
- W4285398439 hasConceptScore W4285398439C155672457 @default.
- W4285398439 hasConceptScore W4285398439C159985019 @default.
- W4285398439 hasConceptScore W4285398439C160892712 @default.
- W4285398439 hasConceptScore W4285398439C171250308 @default.
- W4285398439 hasConceptScore W4285398439C178790620 @default.
- W4285398439 hasConceptScore W4285398439C184651966 @default.
- W4285398439 hasConceptScore W4285398439C185592680 @default.
- W4285398439 hasConceptScore W4285398439C186187911 @default.
- W4285398439 hasConceptScore W4285398439C191897082 @default.
- W4285398439 hasConceptScore W4285398439C192562407 @default.
- W4285398439 hasConceptScore W4285398439C2779851234 @default.
- W4285398439 hasConceptScore W4285398439C42360764 @default.
- W4285398439 hasConceptScore W4285398439C49040817 @default.
- W4285398439 hasConceptScore W4285398439C49102809 @default.
- W4285398439 hasConceptScore W4285398439C6556556 @default.
- W4285398439 hasConceptScore W4285398439C86181022 @default.
- W4285398439 hasIssue "28" @default.
- W4285398439 hasLocation W42853984391 @default.
- W4285398439 hasOpenAccess W4285398439 @default.
- W4285398439 hasPrimaryLocation W42853984391 @default.
- W4285398439 hasRelatedWork W1966464052 @default.
- W4285398439 hasRelatedWork W2002295337 @default.
- W4285398439 hasRelatedWork W20506477 @default.
- W4285398439 hasRelatedWork W2066749828 @default.
- W4285398439 hasRelatedWork W2076243436 @default.
- W4285398439 hasRelatedWork W2149266742 @default.
- W4285398439 hasRelatedWork W2244583645 @default.
- W4285398439 hasRelatedWork W2686530768 @default.
- W4285398439 hasRelatedWork W2895727361 @default.
- W4285398439 hasRelatedWork W3148448124 @default.
- W4285398439 hasVolume "MA2022-01" @default.
- W4285398439 isParatext "false" @default.
- W4285398439 isRetracted "false" @default.
- W4285398439 workType "article" @default.