Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285399080> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4285399080 endingPage "1259" @default.
- W4285399080 startingPage "1259" @default.
- W4285399080 abstract "Silicon nitride (Si 3 N 4 ) has been widely used as an insulating or etch stop layer in the semiconductor devices [1]. For example, in a 3D V-NAND flash memory manufacturing process, Si 3 N 4 is alternately stacked with silicon oxide (SiO 2 ) to form a NAND structure. Here, it is necessary to selectively etch Si 3 N 4 avoiding etching of SiO 2 in the repeated Si 3 N 4 /SiO 2 multi-stack layers. In general, phosphoric acid (H 3 PO 4 ) is used to selectively etch Si 3 N 4 against SiO 2 [2]. However, since the concentration of H 3 PO 4 solution changes with the evaporation of H 2 O, it is not easy to determine the concentration dependence of Si 3 N 4 etching rate in H 3 PO 4 solution. In order to properly control the shape of the 3D V-NAND structure, it is necessary to extensively understand the effect of H 3 PO 4 concentration on the Si 3 N 4 etching. The study of Si 3 N 4 etching has been mainly focused on the effect of additives in H 3 PO 4 on the behavior of Si 3 N 4 etching to solve the issue such as oxide regrowth so far [3, 4]. Fundamental study of the Si 3 N 4 etching reaction mechanism in H 3 PO 4 is lacking. In this study, the Si 3 N 4 etching mechanism in H 3 PO 4 solution is elucidated systematically. For the investigation of Si 3 N 4 etching reaction mechanism, LPCVD Si 3 N 4 blanket wafer and Si 3 N 4 /SiO 2 multi-stack layered trench wafer were used. Etching experiments of of Si 3 N 4 were conducted in 10-95 wt% H 3 PO 4 solutions at 160 °C. Spectroscopic ellipsometry and field emission scanning electron microscopy were used to measure the etching rate of Si 3 N 4 after etching process. First, the changes in etching rate of Si 3 N 4 in the various concentrations of H 3 PO 4 solution were investigated. As shown in Fig. 1, according to our kinetic calculation and experiments, etching rate of Si 3 N 4 increased as the H 3 PO 4 concentration increased until the concentration of H 3 PO 4 reaches a certain concentration that produced the highest etching rate. However, etching rate of Si 3 N 4 decreased with the concentration of H 3 PO 4 beyond the critical H 3 PO 4 concentration. According to the results, there may be two concentrations of H 3 PO 4 solution which produce an identical etching rate of Si 3 N 4 . It is also suggested that not only H 3 PO 4 but also H 2 O plays an important role in the Si 3 N 4 etching kinetics. To investigate the role of H 2 O and H 3 PO 4 in the etching reaction of Si 3 N 4 , kinetic isotope effect (KIE) of Si 3 N 4 etching reaction in H 3 PO 4 solution was used. KIE provides information about which reactant determines the rate-limiting step. In this study, each reactant of Si 3 N 4 etching reaction, H 2 O or H 3 PO 4 , was substituted with D 2 O and D 3 PO 4 , respectively. Then, etching of Si 3 N 4 was conducted in four different solutions. As shown in Fig. 2, when H 3 PO 4 was replaced by D 3 PO 4 , the Si 3 N 4 etching rate was not significantly changed. However, when H 2 O was replaced by D 2 O, the Si 3 N 4 etching rate decreased by 30 %. Therefore, it is thought that rate-limiting step of the Si 3 N 4 etching reaction is determined by an elementary reaction related to H 2 O rather than H 3 PO 4 . Based on the above results, Si 3 N 4 etching reaction mechanism was suggested. First, the Si 3 N 4 surface termination (-NH 2 ) is substituted with H 2 PO 4 - , which is a weak nucleophile, by an S N 1-like reaction. When H 2 PO 4 - binds to Si, the backbone of Si 3 N 4 is weakened because the electronegativity of O (3.44) is greater than N (3.04). Next, the Si-N of the weakened backbone of Si 3 N 4 is substituted with Si-OH by an S N 2-like reaction of H 2 O. This S N 2-like reaction is considered as a rate-limiting step. It is believed that understanding of etching mechanism of Si 3 N 4 in H 3 PO 4 solution will improve selective etching process of Si 3 N 4 for the integration of 3D V-NAND. References [1] A. Grill, P.R. Aron, Thin Solid Films, 96, 25-30 (1982). [2] W.V. Gelder, V.E. Hauser, J. Electrochem. Soc., 114, 869-872 (1967). [3] D. Seo, J. Bae, E. Oh, S. Kim, S. Lim, Microelectron. Eng., 118, 66-71 (2014). [4] T. Kim, C. Son, T. Park, S. Lim, Microelectron. Eng., 221, 111191 (2020). Figure 1" @default.
- W4285399080 created "2022-07-14" @default.
- W4285399080 creator A5004863149 @default.
- W4285399080 creator A5074348744 @default.
- W4285399080 creator A5081557334 @default.
- W4285399080 creator A5085747593 @default.
- W4285399080 date "2022-07-07" @default.
- W4285399080 modified "2023-09-30" @default.
- W4285399080 title "Understanding of Etching Mechanism of Si<sub>3</sub>N<sub>4</sub> Film in H<sub>3</sub>PO<sub>4</sub> Solution For The Fabrication of 3D NAND Devices" @default.
- W4285399080 doi "https://doi.org/10.1149/ma2022-01281259mtgabs" @default.
- W4285399080 hasPublicationYear "2022" @default.
- W4285399080 type Work @default.
- W4285399080 citedByCount "0" @default.
- W4285399080 crossrefType "journal-article" @default.
- W4285399080 hasAuthorship W4285399080A5004863149 @default.
- W4285399080 hasAuthorship W4285399080A5074348744 @default.
- W4285399080 hasAuthorship W4285399080A5081557334 @default.
- W4285399080 hasAuthorship W4285399080A5085747593 @default.
- W4285399080 hasConcept C100460472 @default.
- W4285399080 hasConcept C113196181 @default.
- W4285399080 hasConcept C121285527 @default.
- W4285399080 hasConcept C121332964 @default.
- W4285399080 hasConcept C124296912 @default.
- W4285399080 hasConcept C127413603 @default.
- W4285399080 hasConcept C1291036 @default.
- W4285399080 hasConcept C130472188 @default.
- W4285399080 hasConcept C131017901 @default.
- W4285399080 hasConcept C136525101 @default.
- W4285399080 hasConcept C142724271 @default.
- W4285399080 hasConcept C171250308 @default.
- W4285399080 hasConcept C185592680 @default.
- W4285399080 hasConcept C191897082 @default.
- W4285399080 hasConcept C192562407 @default.
- W4285399080 hasConcept C194760766 @default.
- W4285399080 hasConcept C204787440 @default.
- W4285399080 hasConcept C24326235 @default.
- W4285399080 hasConcept C2776622989 @default.
- W4285399080 hasConcept C2777431650 @default.
- W4285399080 hasConcept C2779227376 @default.
- W4285399080 hasConcept C2779851234 @default.
- W4285399080 hasConcept C43617362 @default.
- W4285399080 hasConcept C49040817 @default.
- W4285399080 hasConcept C544956773 @default.
- W4285399080 hasConcept C61441594 @default.
- W4285399080 hasConcept C71924100 @default.
- W4285399080 hasConcept C97355855 @default.
- W4285399080 hasConceptScore W4285399080C100460472 @default.
- W4285399080 hasConceptScore W4285399080C113196181 @default.
- W4285399080 hasConceptScore W4285399080C121285527 @default.
- W4285399080 hasConceptScore W4285399080C121332964 @default.
- W4285399080 hasConceptScore W4285399080C124296912 @default.
- W4285399080 hasConceptScore W4285399080C127413603 @default.
- W4285399080 hasConceptScore W4285399080C1291036 @default.
- W4285399080 hasConceptScore W4285399080C130472188 @default.
- W4285399080 hasConceptScore W4285399080C131017901 @default.
- W4285399080 hasConceptScore W4285399080C136525101 @default.
- W4285399080 hasConceptScore W4285399080C142724271 @default.
- W4285399080 hasConceptScore W4285399080C171250308 @default.
- W4285399080 hasConceptScore W4285399080C185592680 @default.
- W4285399080 hasConceptScore W4285399080C191897082 @default.
- W4285399080 hasConceptScore W4285399080C192562407 @default.
- W4285399080 hasConceptScore W4285399080C194760766 @default.
- W4285399080 hasConceptScore W4285399080C204787440 @default.
- W4285399080 hasConceptScore W4285399080C24326235 @default.
- W4285399080 hasConceptScore W4285399080C2776622989 @default.
- W4285399080 hasConceptScore W4285399080C2777431650 @default.
- W4285399080 hasConceptScore W4285399080C2779227376 @default.
- W4285399080 hasConceptScore W4285399080C2779851234 @default.
- W4285399080 hasConceptScore W4285399080C43617362 @default.
- W4285399080 hasConceptScore W4285399080C49040817 @default.
- W4285399080 hasConceptScore W4285399080C544956773 @default.
- W4285399080 hasConceptScore W4285399080C61441594 @default.
- W4285399080 hasConceptScore W4285399080C71924100 @default.
- W4285399080 hasConceptScore W4285399080C97355855 @default.
- W4285399080 hasIssue "28" @default.
- W4285399080 hasLocation W42853990801 @default.
- W4285399080 hasOpenAccess W4285399080 @default.
- W4285399080 hasPrimaryLocation W42853990801 @default.
- W4285399080 hasRelatedWork W1964670930 @default.
- W4285399080 hasRelatedWork W1989605686 @default.
- W4285399080 hasRelatedWork W2008419825 @default.
- W4285399080 hasRelatedWork W2046836154 @default.
- W4285399080 hasRelatedWork W2057185012 @default.
- W4285399080 hasRelatedWork W2089600663 @default.
- W4285399080 hasRelatedWork W2129363264 @default.
- W4285399080 hasRelatedWork W2555649254 @default.
- W4285399080 hasRelatedWork W2991214602 @default.
- W4285399080 hasRelatedWork W4377698513 @default.
- W4285399080 hasVolume "MA2022-01" @default.
- W4285399080 isParatext "false" @default.
- W4285399080 isRetracted "false" @default.
- W4285399080 workType "article" @default.