Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285403604> ?p ?o ?g. }
- W4285403604 endingPage "103408" @default.
- W4285403604 startingPage "103408" @default.
- W4285403604 abstract "Machine learning techniques are powerful tools that can be applied to a large variety of fields due to their great versatility. Here, numerous machine learning regression methods are compared for the analysis of FTIR spectra of biological human serum samples in order to support and validate the use of vibrational spectroscopies for the quantification of clinical parameters and the identification of pathologies or states of alteration. To this end, we systematically analysed the prediction of 6 clinical parameters through machine learning techniques: Triglycerides, Cholesterol, HDL Cholesterol, Urea, Glucose and Total Proteins. The prediction ability is excellent in the case of Partial Least Squares regression (PLSR), Neural Networks (NN) and Support Vector regression (SVR) and in particular for Triglycerides, Cholesterol, HDL Cholesterol and Urea while for Glucose and Total Proteins the prediction ability is less accurate. The ensemble regression algorithms, specifically Boosting (BOOST), Boostrap Aggregation (BAG) applied to these base learners and to Decision Trees (DT) and Random Forest (RF), doesn’t significantly improve the base learner results. The comparison also shows superior performances in the case of linear regression and considering the entire infrared spectrum without the need to select spectral features. The results obtained here go in the direction of standardizing the FTIR data analysis methodology to optimize the prediction of clinical parameters. Coupled with the development of portable spectrometers, faster detectors and powerful light sources, FTIR spectroscopy can replace standard clinical testing procedures by making them faster, simpler and lower cost." @default.
- W4285403604 created "2022-07-14" @default.
- W4285403604 creator A5011571956 @default.
- W4285403604 creator A5031306014 @default.
- W4285403604 creator A5050721370 @default.
- W4285403604 creator A5081016786 @default.
- W4285403604 creator A5087460801 @default.
- W4285403604 date "2022-07-01" @default.
- W4285403604 modified "2023-09-23" @default.
- W4285403604 title "Optimization of machine learning techniques for the determination of clinical parameters in dried human serum samples from FTIR spectroscopic data" @default.
- W4285403604 cites W1438124401 @default.
- W4285403604 cites W1677182931 @default.
- W4285403604 cites W1792317929 @default.
- W4285403604 cites W1809071149 @default.
- W4285403604 cites W1821833354 @default.
- W4285403604 cites W1902607710 @default.
- W4285403604 cites W1930556178 @default.
- W4285403604 cites W1946263363 @default.
- W4285403604 cites W1947013733 @default.
- W4285403604 cites W1964357740 @default.
- W4285403604 cites W1976416877 @default.
- W4285403604 cites W1976446692 @default.
- W4285403604 cites W1997313699 @default.
- W4285403604 cites W2001128075 @default.
- W4285403604 cites W2011055829 @default.
- W4285403604 cites W2015928143 @default.
- W4285403604 cites W2028762243 @default.
- W4285403604 cites W2049741850 @default.
- W4285403604 cites W2050234219 @default.
- W4285403604 cites W2056026330 @default.
- W4285403604 cites W2060165457 @default.
- W4285403604 cites W2061082730 @default.
- W4285403604 cites W2070945008 @default.
- W4285403604 cites W2073503722 @default.
- W4285403604 cites W2085884092 @default.
- W4285403604 cites W2111714281 @default.
- W4285403604 cites W2119950421 @default.
- W4285403604 cites W2129246819 @default.
- W4285403604 cites W2131340497 @default.
- W4285403604 cites W2137983211 @default.
- W4285403604 cites W2158863190 @default.
- W4285403604 cites W2158994553 @default.
- W4285403604 cites W2173533727 @default.
- W4285403604 cites W2323692508 @default.
- W4285403604 cites W2465584395 @default.
- W4285403604 cites W2514173981 @default.
- W4285403604 cites W2538830880 @default.
- W4285403604 cites W2605677426 @default.
- W4285403604 cites W2635626043 @default.
- W4285403604 cites W2692536589 @default.
- W4285403604 cites W2761692625 @default.
- W4285403604 cites W2767178685 @default.
- W4285403604 cites W2769469132 @default.
- W4285403604 cites W2785927863 @default.
- W4285403604 cites W2787894218 @default.
- W4285403604 cites W2788373759 @default.
- W4285403604 cites W2801327923 @default.
- W4285403604 cites W2807683509 @default.
- W4285403604 cites W2911964244 @default.
- W4285403604 cites W2955014012 @default.
- W4285403604 cites W2979517544 @default.
- W4285403604 cites W3007828711 @default.
- W4285403604 cites W3024406975 @default.
- W4285403604 cites W3031761042 @default.
- W4285403604 cites W3112670712 @default.
- W4285403604 cites W4212883601 @default.
- W4285403604 cites W4213281528 @default.
- W4285403604 cites W4239510810 @default.
- W4285403604 cites W890228476 @default.
- W4285403604 doi "https://doi.org/10.1016/j.vibspec.2022.103408" @default.
- W4285403604 hasPublicationYear "2022" @default.
- W4285403604 type Work @default.
- W4285403604 citedByCount "0" @default.
- W4285403604 crossrefType "journal-article" @default.
- W4285403604 hasAuthorship W4285403604A5011571956 @default.
- W4285403604 hasAuthorship W4285403604A5031306014 @default.
- W4285403604 hasAuthorship W4285403604A5050721370 @default.
- W4285403604 hasAuthorship W4285403604A5081016786 @default.
- W4285403604 hasAuthorship W4285403604A5087460801 @default.
- W4285403604 hasConcept C105795698 @default.
- W4285403604 hasConcept C119857082 @default.
- W4285403604 hasConcept C12267149 @default.
- W4285403604 hasConcept C127413603 @default.
- W4285403604 hasConcept C152877465 @default.
- W4285403604 hasConcept C153180895 @default.
- W4285403604 hasConcept C154945302 @default.
- W4285403604 hasConcept C160892712 @default.
- W4285403604 hasConcept C169258074 @default.
- W4285403604 hasConcept C186060115 @default.
- W4285403604 hasConcept C22354355 @default.
- W4285403604 hasConcept C33923547 @default.
- W4285403604 hasConcept C41008148 @default.
- W4285403604 hasConcept C42360764 @default.
- W4285403604 hasConcept C48921125 @default.
- W4285403604 hasConcept C50644808 @default.
- W4285403604 hasConcept C83546350 @default.
- W4285403604 hasConcept C86803240 @default.
- W4285403604 hasConceptScore W4285403604C105795698 @default.