Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285403763> ?p ?o ?g. }
- W4285403763 endingPage "104131" @default.
- W4285403763 startingPage "104131" @default.
- W4285403763 abstract "Drug side effects are closely related to the success and failure of drug development. Here we present a novel machine learning method for side effect prediction. The proposed method treats side effect prediction as a multi-label learning problem and uses sparse structure learning to model the relationships between side effects. Additionally, the proposed method adopts the adaptive graph regularization strategy to explore the local structure in drug data and fuse multiple types of drug features. An alternating optimization algorithm is proposed to solve the optimization problem. We collected chemical structures and biological pathway features of drugs as the inputs of our method to predict drug side effects. The results of the cross-validation experiment showed that our method could significantly improve the prediction performance compared to the other state-of-the-art methods. Besides, our model is highly interpretable. It could learn the drug neighbourhood relationships, side effect relationships, and drug features related to side effects. We systematically validated the information extracted by the model with independent data. Some prediction results could also be supported by literature reports. The proposed method could be applied to integrate both chemical and biological data to predict side effects and helps improve drug safety." @default.
- W4285403763 created "2022-07-14" @default.
- W4285403763 creator A5004429108 @default.
- W4285403763 creator A5020544678 @default.
- W4285403763 creator A5027835055 @default.
- W4285403763 creator A5054904663 @default.
- W4285403763 creator A5082204214 @default.
- W4285403763 creator A5084779266 @default.
- W4285403763 date "2022-08-01" @default.
- W4285403763 modified "2023-09-28" @default.
- W4285403763 title "A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects" @default.
- W4285403763 cites W1981697613 @default.
- W4285403763 cites W2011613540 @default.
- W4285403763 cites W2044834685 @default.
- W4285403763 cites W2047708582 @default.
- W4285403763 cites W2049946556 @default.
- W4285403763 cites W2083064246 @default.
- W4285403763 cites W2086747176 @default.
- W4285403763 cites W2126687669 @default.
- W4285403763 cites W2135588188 @default.
- W4285403763 cites W2136127280 @default.
- W4285403763 cites W2145578524 @default.
- W4285403763 cites W2152454589 @default.
- W4285403763 cites W2159707944 @default.
- W4285403763 cites W2234451305 @default.
- W4285403763 cites W2294516783 @default.
- W4285403763 cites W2323328911 @default.
- W4285403763 cites W2472085920 @default.
- W4285403763 cites W2516938563 @default.
- W4285403763 cites W2522694534 @default.
- W4285403763 cites W2579434750 @default.
- W4285403763 cites W2599434197 @default.
- W4285403763 cites W2604723872 @default.
- W4285403763 cites W2746873727 @default.
- W4285403763 cites W2772272229 @default.
- W4285403763 cites W2789789321 @default.
- W4285403763 cites W2805201591 @default.
- W4285403763 cites W2899070097 @default.
- W4285403763 cites W2905878876 @default.
- W4285403763 cites W2906083215 @default.
- W4285403763 cites W2945976633 @default.
- W4285403763 cites W2995517528 @default.
- W4285403763 cites W3083914502 @default.
- W4285403763 cites W3093194543 @default.
- W4285403763 cites W3145950096 @default.
- W4285403763 cites W3168923590 @default.
- W4285403763 cites W4292363360 @default.
- W4285403763 cites W846728699 @default.
- W4285403763 doi "https://doi.org/10.1016/j.jbi.2022.104131" @default.
- W4285403763 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35840061" @default.
- W4285403763 hasPublicationYear "2022" @default.
- W4285403763 type Work @default.
- W4285403763 citedByCount "1" @default.
- W4285403763 countsByYear W42854037632023 @default.
- W4285403763 crossrefType "journal-article" @default.
- W4285403763 hasAuthorship W4285403763A5004429108 @default.
- W4285403763 hasAuthorship W4285403763A5020544678 @default.
- W4285403763 hasAuthorship W4285403763A5027835055 @default.
- W4285403763 hasAuthorship W4285403763A5054904663 @default.
- W4285403763 hasAuthorship W4285403763A5082204214 @default.
- W4285403763 hasAuthorship W4285403763A5084779266 @default.
- W4285403763 hasBestOaLocation W42854037631 @default.
- W4285403763 hasConcept C118552586 @default.
- W4285403763 hasConcept C119857082 @default.
- W4285403763 hasConcept C132525143 @default.
- W4285403763 hasConcept C154945302 @default.
- W4285403763 hasConcept C199360897 @default.
- W4285403763 hasConcept C2776135515 @default.
- W4285403763 hasConcept C2780035454 @default.
- W4285403763 hasConcept C3454156 @default.
- W4285403763 hasConcept C41008148 @default.
- W4285403763 hasConcept C71924100 @default.
- W4285403763 hasConcept C80444323 @default.
- W4285403763 hasConceptScore W4285403763C118552586 @default.
- W4285403763 hasConceptScore W4285403763C119857082 @default.
- W4285403763 hasConceptScore W4285403763C132525143 @default.
- W4285403763 hasConceptScore W4285403763C154945302 @default.
- W4285403763 hasConceptScore W4285403763C199360897 @default.
- W4285403763 hasConceptScore W4285403763C2776135515 @default.
- W4285403763 hasConceptScore W4285403763C2780035454 @default.
- W4285403763 hasConceptScore W4285403763C3454156 @default.
- W4285403763 hasConceptScore W4285403763C41008148 @default.
- W4285403763 hasConceptScore W4285403763C71924100 @default.
- W4285403763 hasConceptScore W4285403763C80444323 @default.
- W4285403763 hasLocation W42854037631 @default.
- W4285403763 hasLocation W42854037632 @default.
- W4285403763 hasOpenAccess W4285403763 @default.
- W4285403763 hasPrimaryLocation W42854037631 @default.
- W4285403763 hasRelatedWork W2961085424 @default.
- W4285403763 hasRelatedWork W3046775127 @default.
- W4285403763 hasRelatedWork W3170094116 @default.
- W4285403763 hasRelatedWork W3209574120 @default.
- W4285403763 hasRelatedWork W4205958290 @default.
- W4285403763 hasRelatedWork W4285260836 @default.
- W4285403763 hasRelatedWork W4286629047 @default.
- W4285403763 hasRelatedWork W4306321456 @default.
- W4285403763 hasRelatedWork W4306674287 @default.
- W4285403763 hasRelatedWork W4224009465 @default.