Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285403785> ?p ?o ?g. }
- W4285403785 endingPage "204" @default.
- W4285403785 startingPage "190" @default.
- W4285403785 abstract "• Based on carbocyclic compounds, an environment-friendly material was developed successfully. • The results show that the new synthesis inhibitor (PTC) exhibit extraordinary corrosion protection. • The high adsorption capacity of PTC is due to its strong mutual interaction with metal surface. • Electron donor behavior of PTC compound strongly increases its coordination to Fe(110) surface. • Multi-level computational perspectives confirm and support the experimental results. Despite the growing interest in dealing with how to control the corrosion behavior of steel alloys via organic corrosion inhibitors (CIs), the adsorption mechanism of CIs has remained less understood with respect to the physical–chemical interactions as well as the self-assembly of organic coatings, which might be the primary sources for excellent electrochemical resistance. For this purpose, a new carbocyclic compound, namely 4-Hydroxy-3-(2-methoxybenzoyl)-2,6-bis(4-methoxylphenyl)-4-(2-methoxyphenyl)cyclohexane-1,1dicarbonitrile (PTC), was synthesized as a sustainable-green corrosion inhibitor for mild steel (MS) in HCl solution in a bid to understand the organic-metal mechanism, the adsorption behavior, and the correlation between charge transfer phenomena and corrosion properties of PTC compound. NMR ( 1 H and 13 C) spectroscopy, electrochemical techniques and surface analysis were used to characterize and evaluate the inhibitive performance of PTC compound on the metal substrate. The electrochemical results revealed that the PTC inhibitor exhibited high corrosion resistance with inhibition efficiency reaches 92.86 % at 10 −3 M due to the significant growth of organic layer sealing the micro-defects present in corroded metal. Furthermore, the PTC inhibitor showed good performance at all temperatures (303–333 K) studied and maintained protective ability at the maximum temperature. Then, the protective layer assembled by the adsorption of PTC inhibitor presents robust protection and reliable corrosion stability. Multi-level theoretical calculations based on density functional theory (DFT), density functional based tight-binding (DFTB) and molecular dynamic (MD) simulations were performed to explore the corrosion protection mechanism activated by the presence of PTC inhibitor. As a result, the PTC-surface interactions are mainly dominated by the formation of strong covalent bonds such as N–Fe and O–Fe in the parallel adsorption geometries, in which the formation of the organic layer is consistent with improved charge transfer behavior. Thus, the PTC molecule was preferentially adsorbed through polar functional groups and exhibits high adsorption energy (–6.43 eV), resulting from self-assembly triggered by an organic-metal interaction. This was confirmed experimentally by the results of electrochemical assessments, which showed that reliable and excellent barrier properties were provided for more than 72 h owing to the significant role of functional groups in the π–π interactions of adsorbed PTC molecule. Finally, the computational perspectives provide a profound explanation for the interfacial mechanism of the PTC molecule and show a good correlation with the experimental observations." @default.
- W4285403785 created "2022-07-14" @default.
- W4285403785 creator A5011434133 @default.
- W4285403785 creator A5021533234 @default.
- W4285403785 creator A5028752346 @default.
- W4285403785 creator A5046595967 @default.
- W4285403785 creator A5055528561 @default.
- W4285403785 creator A5061828069 @default.
- W4285403785 date "2022-10-01" @default.
- W4285403785 modified "2023-10-12" @default.
- W4285403785 title "Predicting the interaction between organic layer and metal substrate through DFTB and electrochemical approach for excellent corrosion protection" @default.
- W4285403785 cites W1974721255 @default.
- W4285403785 cites W1979744261 @default.
- W4285403785 cites W1980747979 @default.
- W4285403785 cites W2002332133 @default.
- W4285403785 cites W2006368113 @default.
- W4285403785 cites W2022696619 @default.
- W4285403785 cites W2025857783 @default.
- W4285403785 cites W2029667189 @default.
- W4285403785 cites W2030498408 @default.
- W4285403785 cites W2050735742 @default.
- W4285403785 cites W2051583766 @default.
- W4285403785 cites W2051831029 @default.
- W4285403785 cites W2058184540 @default.
- W4285403785 cites W2060447139 @default.
- W4285403785 cites W2070911685 @default.
- W4285403785 cites W2074374041 @default.
- W4285403785 cites W2092077040 @default.
- W4285403785 cites W2125085520 @default.
- W4285403785 cites W2132525235 @default.
- W4285403785 cites W2169972381 @default.
- W4285403785 cites W2514588234 @default.
- W4285403785 cites W2577036218 @default.
- W4285403785 cites W2622877012 @default.
- W4285403785 cites W2750114421 @default.
- W4285403785 cites W2792150695 @default.
- W4285403785 cites W2792539132 @default.
- W4285403785 cites W2810520055 @default.
- W4285403785 cites W2913668026 @default.
- W4285403785 cites W2924926958 @default.
- W4285403785 cites W2949618641 @default.
- W4285403785 cites W2972000892 @default.
- W4285403785 cites W2996396558 @default.
- W4285403785 cites W3009840675 @default.
- W4285403785 cites W3033997729 @default.
- W4285403785 cites W3081821716 @default.
- W4285403785 cites W3082253858 @default.
- W4285403785 cites W3088285917 @default.
- W4285403785 cites W3097057312 @default.
- W4285403785 cites W3097862476 @default.
- W4285403785 cites W3107097279 @default.
- W4285403785 cites W3107902022 @default.
- W4285403785 cites W3115159718 @default.
- W4285403785 cites W3117337800 @default.
- W4285403785 cites W3127085051 @default.
- W4285403785 cites W3129052015 @default.
- W4285403785 cites W3131628853 @default.
- W4285403785 cites W3135782740 @default.
- W4285403785 cites W3154224245 @default.
- W4285403785 cites W3154474026 @default.
- W4285403785 cites W3158502586 @default.
- W4285403785 cites W3165138156 @default.
- W4285403785 cites W3193947462 @default.
- W4285403785 cites W3195302083 @default.
- W4285403785 cites W3199971509 @default.
- W4285403785 cites W3213139979 @default.
- W4285403785 cites W3216737096 @default.
- W4285403785 cites W4200483023 @default.
- W4285403785 cites W4214572422 @default.
- W4285403785 cites W4224273488 @default.
- W4285403785 cites W4252973180 @default.
- W4285403785 doi "https://doi.org/10.1016/j.jiec.2022.07.009" @default.
- W4285403785 hasPublicationYear "2022" @default.
- W4285403785 type Work @default.
- W4285403785 citedByCount "3" @default.
- W4285403785 countsByYear W42854037852023 @default.
- W4285403785 crossrefType "journal-article" @default.
- W4285403785 hasAuthorship W4285403785A5011434133 @default.
- W4285403785 hasAuthorship W4285403785A5021533234 @default.
- W4285403785 hasAuthorship W4285403785A5028752346 @default.
- W4285403785 hasAuthorship W4285403785A5046595967 @default.
- W4285403785 hasAuthorship W4285403785A5055528561 @default.
- W4285403785 hasAuthorship W4285403785A5061828069 @default.
- W4285403785 hasConcept C111368507 @default.
- W4285403785 hasConcept C127313418 @default.
- W4285403785 hasConcept C127413603 @default.
- W4285403785 hasConcept C147789679 @default.
- W4285403785 hasConcept C171250308 @default.
- W4285403785 hasConcept C17525397 @default.
- W4285403785 hasConcept C185592680 @default.
- W4285403785 hasConcept C191897082 @default.
- W4285403785 hasConcept C192562407 @default.
- W4285403785 hasConcept C20625102 @default.
- W4285403785 hasConcept C2777289219 @default.
- W4285403785 hasConcept C2779227376 @default.
- W4285403785 hasConcept C42360764 @default.
- W4285403785 hasConcept C52859227 @default.
- W4285403785 hasConcept C544153396 @default.