Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285403792> ?p ?o ?g. }
- W4285403792 endingPage "107024" @default.
- W4285403792 startingPage "107024" @default.
- W4285403792 abstract "Chest radiographs (CXR) are in great demand for visualizing the pathology of the lungs. However, the appearance of bones in the lung region hinders the localization of any lesion or nodule present in the CXR. Thus, bone suppression becomes an important task for the effective screening of lung diseases. Simultaneously, it is equally important to preserve spatial information and image quality because they provide crucial insights on the size and area of infection, color accuracy, structural quality, etc. Many researchers considered bone suppression as an image denoising problem and proposed conditional Generative Adversarial Network-based (cGAN) models for generating bone suppressed images from CXRs. These works do not focus on the retention of spatial features and image quality. The authors of this manuscript developed the Spatial Feature and Resolution Maximization (SFRM) GAN to efficiently minimize the visibility of bones in CXRs while ensuring maximum retention of critical information.This task is achieved by modifying the architectures of the discriminator and generator of the pix2pix model. The discriminator is combined with the Wasserstein GAN with Gradient Penalty to increase its performance and training stability. For the generator, a combination of different task-specific loss functions, viz., L1, Perceptual, and Sobel loss are employed to capture the intrinsic information in the image.The proposed model reported as measures of performance a mean PSNR of 43.588, mean NMSE of 0.00025, mean SSIM of 0.989, and mean Entropy of 0.454 bits/pixel on a test size of 100 images. Further, the combination of δ=104, α=1, β=10, and γ=10 are the hyperparameters that provided the best trade-off between image denoising and quality retention.The degree of bone suppression and spatial information preservation can be improved by adding the Sobel and Perceptual loss respectively. SFRM-GAN not only suppresses bones but also retains the image quality and intrinsic information. Based on the results of student's t-test it is concluded that SFRM-GAN yields statistically significant results at a 0.95 level of confidence and shows its supremacy over the state-of-the-art models. Thus, it may be used for denoising and preprocessing of images." @default.
- W4285403792 created "2022-07-14" @default.
- W4285403792 creator A5007343580 @default.
- W4285403792 creator A5028866048 @default.
- W4285403792 creator A5054633948 @default.
- W4285403792 creator A5057070686 @default.
- W4285403792 creator A5058705554 @default.
- W4285403792 date "2022-09-01" @default.
- W4285403792 modified "2023-10-16" @default.
- W4285403792 title "Spatial feature and resolution maximization GAN for bone suppression in chest radiographs" @default.
- W4285403792 cites W1982471090 @default.
- W4285403792 cites W2119830757 @default.
- W4285403792 cites W2137865578 @default.
- W4285403792 cites W2161076708 @default.
- W4285403792 cites W2515708490 @default.
- W4285403792 cites W2743780012 @default.
- W4285403792 cites W2901954625 @default.
- W4285403792 cites W2908304681 @default.
- W4285403792 cites W2952587392 @default.
- W4285403792 cites W2956015785 @default.
- W4285403792 cites W2982350022 @default.
- W4285403792 cites W2990572432 @default.
- W4285403792 cites W2990924586 @default.
- W4285403792 cites W3006589360 @default.
- W4285403792 cites W3015922642 @default.
- W4285403792 cites W3021137017 @default.
- W4285403792 cites W3032507008 @default.
- W4285403792 cites W3040135820 @default.
- W4285403792 cites W3127586369 @default.
- W4285403792 cites W4221022884 @default.
- W4285403792 doi "https://doi.org/10.1016/j.cmpb.2022.107024" @default.
- W4285403792 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35863123" @default.
- W4285403792 hasPublicationYear "2022" @default.
- W4285403792 type Work @default.
- W4285403792 citedByCount "7" @default.
- W4285403792 countsByYear W42854037922022 @default.
- W4285403792 countsByYear W42854037922023 @default.
- W4285403792 crossrefType "journal-article" @default.
- W4285403792 hasAuthorship W4285403792A5007343580 @default.
- W4285403792 hasAuthorship W4285403792A5028866048 @default.
- W4285403792 hasAuthorship W4285403792A5054633948 @default.
- W4285403792 hasAuthorship W4285403792A5057070686 @default.
- W4285403792 hasAuthorship W4285403792A5058705554 @default.
- W4285403792 hasConcept C115961682 @default.
- W4285403792 hasConcept C126255220 @default.
- W4285403792 hasConcept C126838900 @default.
- W4285403792 hasConcept C138885662 @default.
- W4285403792 hasConcept C153180895 @default.
- W4285403792 hasConcept C154945302 @default.
- W4285403792 hasConcept C160633673 @default.
- W4285403792 hasConcept C193536780 @default.
- W4285403792 hasConcept C205372480 @default.
- W4285403792 hasConcept C2776330181 @default.
- W4285403792 hasConcept C2776401178 @default.
- W4285403792 hasConcept C2779803651 @default.
- W4285403792 hasConcept C30703548 @default.
- W4285403792 hasConcept C31972630 @default.
- W4285403792 hasConcept C33923547 @default.
- W4285403792 hasConcept C36454342 @default.
- W4285403792 hasConcept C41008148 @default.
- W4285403792 hasConcept C41895202 @default.
- W4285403792 hasConcept C55020928 @default.
- W4285403792 hasConcept C71924100 @default.
- W4285403792 hasConcept C76155785 @default.
- W4285403792 hasConcept C9417928 @default.
- W4285403792 hasConcept C94915269 @default.
- W4285403792 hasConceptScore W4285403792C115961682 @default.
- W4285403792 hasConceptScore W4285403792C126255220 @default.
- W4285403792 hasConceptScore W4285403792C126838900 @default.
- W4285403792 hasConceptScore W4285403792C138885662 @default.
- W4285403792 hasConceptScore W4285403792C153180895 @default.
- W4285403792 hasConceptScore W4285403792C154945302 @default.
- W4285403792 hasConceptScore W4285403792C160633673 @default.
- W4285403792 hasConceptScore W4285403792C193536780 @default.
- W4285403792 hasConceptScore W4285403792C205372480 @default.
- W4285403792 hasConceptScore W4285403792C2776330181 @default.
- W4285403792 hasConceptScore W4285403792C2776401178 @default.
- W4285403792 hasConceptScore W4285403792C2779803651 @default.
- W4285403792 hasConceptScore W4285403792C30703548 @default.
- W4285403792 hasConceptScore W4285403792C31972630 @default.
- W4285403792 hasConceptScore W4285403792C33923547 @default.
- W4285403792 hasConceptScore W4285403792C36454342 @default.
- W4285403792 hasConceptScore W4285403792C41008148 @default.
- W4285403792 hasConceptScore W4285403792C41895202 @default.
- W4285403792 hasConceptScore W4285403792C55020928 @default.
- W4285403792 hasConceptScore W4285403792C71924100 @default.
- W4285403792 hasConceptScore W4285403792C76155785 @default.
- W4285403792 hasConceptScore W4285403792C9417928 @default.
- W4285403792 hasConceptScore W4285403792C94915269 @default.
- W4285403792 hasLocation W42854037921 @default.
- W4285403792 hasLocation W42854037922 @default.
- W4285403792 hasOpenAccess W4285403792 @default.
- W4285403792 hasPrimaryLocation W42854037921 @default.
- W4285403792 hasRelatedWork W121273120 @default.
- W4285403792 hasRelatedWork W1604511055 @default.
- W4285403792 hasRelatedWork W2080860377 @default.
- W4285403792 hasRelatedWork W2090093270 @default.
- W4285403792 hasRelatedWork W2164918837 @default.