Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285403901> ?p ?o ?g. }
- W4285403901 endingPage "101174" @default.
- W4285403901 startingPage "101174" @default.
- W4285403901 abstract "In the era of big data, service quality evaluation using online reviews has become a popular topic. However, very few studies focus simultaneously on service quality evaluation and service improvement. In this study, a research framework for service quality evaluation and service improvement is proposed, sentiment analysis is used to extract the temporal scores of the service attributes of each subdimension of the service quality model from online reviews, and a long short-term memory network is used to predict the scores for the service quality provider. Furthermore, a long short-term memory network-based sensitivity analysis, in conjunction with improvement costs, is used to rank the subdimensions in the service quality model. Then, service improvement strategies are determined according to the rankings of the service attributes. Hotels’ online reviews were used to investigate the effectiveness of the proposed framework. A series of service improvement strategies for the specific service attributes are provided." @default.
- W4285403901 created "2022-07-14" @default.
- W4285403901 creator A5038097386 @default.
- W4285403901 creator A5065276486 @default.
- W4285403901 date "2022-07-01" @default.
- W4285403901 modified "2023-10-03" @default.
- W4285403901 title "Service quality evaluation and service improvement using online reviews: A framework combining deep learning with a hierarchical service quality model" @default.
- W4285403901 cites W1478762758 @default.
- W4285403901 cites W1874059070 @default.
- W4285403901 cites W1969267249 @default.
- W4285403901 cites W1972458078 @default.
- W4285403901 cites W1992777957 @default.
- W4285403901 cites W1999645085 @default.
- W4285403901 cites W2003465271 @default.
- W4285403901 cites W2014101371 @default.
- W4285403901 cites W2028809046 @default.
- W4285403901 cites W2058595220 @default.
- W4285403901 cites W2060298340 @default.
- W4285403901 cites W2079223345 @default.
- W4285403901 cites W2087750581 @default.
- W4285403901 cites W2094013842 @default.
- W4285403901 cites W2106997360 @default.
- W4285403901 cites W2160683391 @default.
- W4285403901 cites W2175227141 @default.
- W4285403901 cites W2519102915 @default.
- W4285403901 cites W2520828129 @default.
- W4285403901 cites W2555816110 @default.
- W4285403901 cites W2583503161 @default.
- W4285403901 cites W2624385633 @default.
- W4285403901 cites W2756909646 @default.
- W4285403901 cites W2762918812 @default.
- W4285403901 cites W2775095356 @default.
- W4285403901 cites W2790685739 @default.
- W4285403901 cites W2792665168 @default.
- W4285403901 cites W2810316458 @default.
- W4285403901 cites W2908937292 @default.
- W4285403901 cites W2912943867 @default.
- W4285403901 cites W2947859092 @default.
- W4285403901 cites W2994747954 @default.
- W4285403901 cites W3015409196 @default.
- W4285403901 cites W3038321831 @default.
- W4285403901 cites W3042455157 @default.
- W4285403901 cites W3047485741 @default.
- W4285403901 cites W3108264780 @default.
- W4285403901 cites W3134954601 @default.
- W4285403901 cites W3199193989 @default.
- W4285403901 cites W4200137246 @default.
- W4285403901 cites W4200618217 @default.
- W4285403901 cites W4206550351 @default.
- W4285403901 cites W4220684944 @default.
- W4285403901 cites W4240969601 @default.
- W4285403901 cites W950964638 @default.
- W4285403901 doi "https://doi.org/10.1016/j.elerap.2022.101174" @default.
- W4285403901 hasPublicationYear "2022" @default.
- W4285403901 type Work @default.
- W4285403901 citedByCount "8" @default.
- W4285403901 countsByYear W42854039012023 @default.
- W4285403901 crossrefType "journal-article" @default.
- W4285403901 hasAuthorship W4285403901A5038097386 @default.
- W4285403901 hasAuthorship W4285403901A5065276486 @default.
- W4285403901 hasConcept C111472728 @default.
- W4285403901 hasConcept C116537 @default.
- W4285403901 hasConcept C138885662 @default.
- W4285403901 hasConcept C140781008 @default.
- W4285403901 hasConcept C144133560 @default.
- W4285403901 hasConcept C16151460 @default.
- W4285403901 hasConcept C162853370 @default.
- W4285403901 hasConcept C195094911 @default.
- W4285403901 hasConcept C2779530757 @default.
- W4285403901 hasConcept C2780378061 @default.
- W4285403901 hasConcept C31258907 @default.
- W4285403901 hasConcept C41008148 @default.
- W4285403901 hasConcept C5119721 @default.
- W4285403901 hasConcept C61063171 @default.
- W4285403901 hasConcept C68595000 @default.
- W4285403901 hasConceptScore W4285403901C111472728 @default.
- W4285403901 hasConceptScore W4285403901C116537 @default.
- W4285403901 hasConceptScore W4285403901C138885662 @default.
- W4285403901 hasConceptScore W4285403901C140781008 @default.
- W4285403901 hasConceptScore W4285403901C144133560 @default.
- W4285403901 hasConceptScore W4285403901C16151460 @default.
- W4285403901 hasConceptScore W4285403901C162853370 @default.
- W4285403901 hasConceptScore W4285403901C195094911 @default.
- W4285403901 hasConceptScore W4285403901C2779530757 @default.
- W4285403901 hasConceptScore W4285403901C2780378061 @default.
- W4285403901 hasConceptScore W4285403901C31258907 @default.
- W4285403901 hasConceptScore W4285403901C41008148 @default.
- W4285403901 hasConceptScore W4285403901C5119721 @default.
- W4285403901 hasConceptScore W4285403901C61063171 @default.
- W4285403901 hasConceptScore W4285403901C68595000 @default.
- W4285403901 hasLocation W42854039011 @default.
- W4285403901 hasOpenAccess W4285403901 @default.
- W4285403901 hasPrimaryLocation W42854039011 @default.
- W4285403901 hasRelatedWork W1480845023 @default.
- W4285403901 hasRelatedWork W1581866805 @default.
- W4285403901 hasRelatedWork W1999320561 @default.
- W4285403901 hasRelatedWork W2040310874 @default.
- W4285403901 hasRelatedWork W2052352522 @default.