Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285403937> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4285403937 endingPage "36" @default.
- W4285403937 startingPage "19" @default.
- W4285403937 abstract "Attacks against computer networks, “cyber-attacks”, are now common place affecting almost every Internet connected device on a daily basis. Organisations are now using machine learning and deep learning to thwart these types of attacks for their effectiveness without the need for human intervention. Machine learning offers the biggest advantage in their ability to detect, curtail, prevent, recover and even deal with untrained types of attacks without being explicitly programmed. This research will show the many different types of algorithms that are employed to fight against the different types of cyber-attacks, which are also explained. The classification algorithms, their implementation, accuracy and testing time are presented. The algorithms employed for this experiment were the Gaussian Naïve-Bayes algorithm, Logistic Regression Algorithm, SVM (Support Vector Machine) Algorithm, Stochastic Gradient Descent Algorithm, Decision Tree Algorithm, Random Forest Algorithm, Gradient Boosting Algorithm, K-Nearest Neighbour Algorithm, ANN (Artificial Neural Network) (here we also employed the Multilevel Perceptron Algorithm), Convolutional Neural Network (CNN) Algorithm and the Recurrent Neural Network (RNN) Algorithm. The study concluded that amongst the various machine learning algorithms, the Logistic Regression and Decision tree classifiers all took a very short time to be implemented giving an accuracy of over 90% for malware detection inside various test datasets. The Gaussian Naïve-Bayes classifier, though fast to implement, only gave an accuracy between 51-88%. The Multilevel Perceptron, non-linear SVM and Gradient Boosting algorithms all took a very long time to be implemented. The algorithm that performed with the greatest accuracy was the Random Forest Classification algorithm." @default.
- W4285403937 created "2022-07-14" @default.
- W4285403937 creator A5023793247 @default.
- W4285403937 creator A5087328990 @default.
- W4285403937 date "2022-07-01" @default.
- W4285403937 modified "2023-09-26" @default.
- W4285403937 title "Comparative Analysis of Intrusion Detection System Using Machine Learning and Deep Learning Algorithms" @default.
- W4285403937 cites W1504869511 @default.
- W4285403937 cites W2726781897 @default.
- W4285403937 cites W2742495185 @default.
- W4285403937 cites W2803657629 @default.
- W4285403937 cites W2807696011 @default.
- W4285403937 cites W2811049446 @default.
- W4285403937 cites W2862150274 @default.
- W4285403937 cites W2887019724 @default.
- W4285403937 cites W2899987729 @default.
- W4285403937 cites W2907611437 @default.
- W4285403937 cites W2913825598 @default.
- W4285403937 cites W3015426610 @default.
- W4285403937 cites W3046892512 @default.
- W4285403937 cites W3048446485 @default.
- W4285403937 cites W3089977857 @default.
- W4285403937 cites W3092531413 @default.
- W4285403937 cites W3093469966 @default.
- W4285403937 cites W3107833611 @default.
- W4285403937 cites W3108827348 @default.
- W4285403937 cites W3112637638 @default.
- W4285403937 cites W3117835026 @default.
- W4285403937 cites W4245461914 @default.
- W4285403937 doi "https://doi.org/10.33166/aetic.2022.03.003" @default.
- W4285403937 hasPublicationYear "2022" @default.
- W4285403937 type Work @default.
- W4285403937 citedByCount "1" @default.
- W4285403937 countsByYear W42854039372023 @default.
- W4285403937 crossrefType "journal-article" @default.
- W4285403937 hasAuthorship W4285403937A5023793247 @default.
- W4285403937 hasAuthorship W4285403937A5087328990 @default.
- W4285403937 hasBestOaLocation W42854039371 @default.
- W4285403937 hasConcept C110083411 @default.
- W4285403937 hasConcept C11413529 @default.
- W4285403937 hasConcept C119857082 @default.
- W4285403937 hasConcept C12267149 @default.
- W4285403937 hasConcept C154945302 @default.
- W4285403937 hasConcept C169258074 @default.
- W4285403937 hasConcept C41008148 @default.
- W4285403937 hasConcept C50644808 @default.
- W4285403937 hasConcept C52001869 @default.
- W4285403937 hasConcept C60908668 @default.
- W4285403937 hasConcept C70153297 @default.
- W4285403937 hasConcept C84525736 @default.
- W4285403937 hasConceptScore W4285403937C110083411 @default.
- W4285403937 hasConceptScore W4285403937C11413529 @default.
- W4285403937 hasConceptScore W4285403937C119857082 @default.
- W4285403937 hasConceptScore W4285403937C12267149 @default.
- W4285403937 hasConceptScore W4285403937C154945302 @default.
- W4285403937 hasConceptScore W4285403937C169258074 @default.
- W4285403937 hasConceptScore W4285403937C41008148 @default.
- W4285403937 hasConceptScore W4285403937C50644808 @default.
- W4285403937 hasConceptScore W4285403937C52001869 @default.
- W4285403937 hasConceptScore W4285403937C60908668 @default.
- W4285403937 hasConceptScore W4285403937C70153297 @default.
- W4285403937 hasConceptScore W4285403937C84525736 @default.
- W4285403937 hasIssue "3" @default.
- W4285403937 hasLocation W42854039371 @default.
- W4285403937 hasOpenAccess W4285403937 @default.
- W4285403937 hasPrimaryLocation W42854039371 @default.
- W4285403937 hasRelatedWork W3168994312 @default.
- W4285403937 hasRelatedWork W3186233728 @default.
- W4285403937 hasRelatedWork W3204641204 @default.
- W4285403937 hasRelatedWork W4200057378 @default.
- W4285403937 hasRelatedWork W4285225238 @default.
- W4285403937 hasRelatedWork W4285407528 @default.
- W4285403937 hasRelatedWork W4313165475 @default.
- W4285403937 hasRelatedWork W4360993977 @default.
- W4285403937 hasRelatedWork W4377964522 @default.
- W4285403937 hasRelatedWork W4384345534 @default.
- W4285403937 hasVolume "6" @default.
- W4285403937 isParatext "false" @default.
- W4285403937 isRetracted "false" @default.
- W4285403937 workType "article" @default.