Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285403949> ?p ?o ?g. }
- W4285403949 endingPage "105845" @default.
- W4285403949 startingPage "105845" @default.
- W4285403949 abstract "The emergence of the novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to millions of infections and is exerting an unprecedented impact on society and economies worldwide. The evidence showed that heart failure (HF) is a clinical syndrome that could be encountered at different stages during the progression of COVID-19. Shenfu injection (SFI), a traditional Chinese medicine (TCM) formula has been widely used for heart failure therapy in China and was suggested to treat critical COVID-19 cases based on the guideline for diagnosis and treatment of COVID-19 (the 7th version) issued by National Health Commission of the People's Republic of China. However, the active components, potential targets, related pathways, and underlying pharmacology mechanism of SFI against COVID-19 combined with HF remain vague.To investigate the effectiveness and possible pharmacological mechanism of SFI for the prevention and treatment of COVID-19 combined with HF.In the current study, a network analysis approach integrating active compound screening (drug-likeness, lipophilicity, and aqueous solubility models), target fishing (Traditional Chinese Medicine Systems Pharmacology, fingerprint-based Similarity Ensemble Approach, and PharmMapper databases), compound-target-disease network construction (Cytoscape software), protein-protein interaction network construction (STRING and Cytoscape software), biological process analysis (STRING and Cytoscape plug-in Clue GO) and pathway analysis (Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis) was developed to decipher the active ingredients, potential targets, relevant pathways, and the therapeutic mechanisms of SFI for preventing and treating COVID-19 combined with HF.Finally, 20 active compounds (DL ≥ 0.18, 1≤Alog P ≤ 5, and -5≤LogS ≤ -1) and 164 relevant targets of SFI were identified related to the development of COVID-19 combined with HF, which were mainly involved in three biological processes including metabolic, hemostasis, and cytokine signaling in immune system. The C-T-D network and reactome pathway analysis indicated that SFI probably regulated the pathological processes of heart failure, respiratory failure, lung injury, and inflammatory response in patients with COVID-19 combined with HF through acting on several targets and pathways. Moreover, the venn diagram was used to identify 54 overlapped targets of SFI, COVID-19, and HF. KEGG pathway enrichment analysis showed that 54 overlapped targets were highly enriched to several COVID-19 and HF related pathways, such as IL-17 signaling pathway, Th17 cell differentiation, and NF-kappa B signaling pathway.A comprehensive network analysis approach framework was developed to systematically elucidate the potential pharmacological mechanism of SFI for the prevention and treatment of SFI against COVID-19 combined with HF. The current study may not only provide in-depth understanding of the pharmacological mechanisms of SFI, but also a scientific basis for the application of SFI against COVID-19 combined with HF." @default.
- W4285403949 created "2022-07-14" @default.
- W4285403949 creator A5031337173 @default.
- W4285403949 creator A5057139977 @default.
- W4285403949 creator A5066275777 @default.
- W4285403949 creator A5070666006 @default.
- W4285403949 date "2022-09-01" @default.
- W4285403949 modified "2023-10-18" @default.
- W4285403949 title "Network analysis for elucidating the mechanisms of Shenfu injection in preventing and treating COVID-19 combined with heart failure" @default.
- W4285403949 cites W1560020441 @default.
- W4285403949 cites W1685675634 @default.
- W4285403949 cites W1977327751 @default.
- W4285403949 cites W1983198554 @default.
- W4285403949 cites W2010033073 @default.
- W4285403949 cites W2020116600 @default.
- W4285403949 cites W2023122823 @default.
- W4285403949 cites W2024674972 @default.
- W4285403949 cites W2025672718 @default.
- W4285403949 cites W2025897779 @default.
- W4285403949 cites W2036291177 @default.
- W4285403949 cites W2039261408 @default.
- W4285403949 cites W2052182309 @default.
- W4285403949 cites W2068950612 @default.
- W4285403949 cites W2076804940 @default.
- W4285403949 cites W2091366403 @default.
- W4285403949 cites W2102479939 @default.
- W4285403949 cites W2104916446 @default.
- W4285403949 cites W2121730416 @default.
- W4285403949 cites W2122107067 @default.
- W4285403949 cites W2124679671 @default.
- W4285403949 cites W2124764241 @default.
- W4285403949 cites W2135732933 @default.
- W4285403949 cites W2137052779 @default.
- W4285403949 cites W2142633038 @default.
- W4285403949 cites W2154139219 @default.
- W4285403949 cites W2158217645 @default.
- W4285403949 cites W2159675211 @default.
- W4285403949 cites W2162011385 @default.
- W4285403949 cites W2166093318 @default.
- W4285403949 cites W2287362735 @default.
- W4285403949 cites W2335925695 @default.
- W4285403949 cites W2544926600 @default.
- W4285403949 cites W2559588208 @default.
- W4285403949 cites W2672110751 @default.
- W4285403949 cites W2770566060 @default.
- W4285403949 cites W2808968956 @default.
- W4285403949 cites W2886035231 @default.
- W4285403949 cites W2900569176 @default.
- W4285403949 cites W2936796333 @default.
- W4285403949 cites W2985636042 @default.
- W4285403949 cites W2990952278 @default.
- W4285403949 cites W3001118548 @default.
- W4285403949 cites W3014050022 @default.
- W4285403949 cites W3015491708 @default.
- W4285403949 cites W3023826646 @default.
- W4285403949 cites W3024696828 @default.
- W4285403949 cites W3033716792 @default.
- W4285403949 cites W3041319886 @default.
- W4285403949 cites W3043309438 @default.
- W4285403949 cites W3043433431 @default.
- W4285403949 cites W3043494617 @default.
- W4285403949 cites W3045608202 @default.
- W4285403949 cites W3088838950 @default.
- W4285403949 cites W3090844041 @default.
- W4285403949 cites W3097145107 @default.
- W4285403949 cites W3107241734 @default.
- W4285403949 cites W3116488354 @default.
- W4285403949 cites W3119507535 @default.
- W4285403949 cites W3123199686 @default.
- W4285403949 cites W3169017250 @default.
- W4285403949 cites W3175087330 @default.
- W4285403949 cites W3182042060 @default.
- W4285403949 cites W3193598686 @default.
- W4285403949 cites W3200240687 @default.
- W4285403949 cites W3211051404 @default.
- W4285403949 cites W4200066927 @default.
- W4285403949 cites W4206245015 @default.
- W4285403949 cites W4247422954 @default.
- W4285403949 cites W4248107770 @default.
- W4285403949 doi "https://doi.org/10.1016/j.compbiomed.2022.105845" @default.
- W4285403949 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35849948" @default.
- W4285403949 hasPublicationYear "2022" @default.
- W4285403949 type Work @default.
- W4285403949 citedByCount "1" @default.
- W4285403949 countsByYear W42854039492023 @default.
- W4285403949 crossrefType "journal-article" @default.
- W4285403949 hasAuthorship W4285403949A5031337173 @default.
- W4285403949 hasAuthorship W4285403949A5057139977 @default.
- W4285403949 hasAuthorship W4285403949A5066275777 @default.
- W4285403949 hasAuthorship W4285403949A5070666006 @default.
- W4285403949 hasBestOaLocation W42854039492 @default.
- W4285403949 hasConcept C103637391 @default.
- W4285403949 hasConcept C104317684 @default.
- W4285403949 hasConcept C111472728 @default.
- W4285403949 hasConcept C138885662 @default.
- W4285403949 hasConcept C142724271 @default.
- W4285403949 hasConcept C150194340 @default.
- W4285403949 hasConcept C152724338 @default.