Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285404671> ?p ?o ?g. }
- W4285404671 endingPage "118138" @default.
- W4285404671 startingPage "118138" @default.
- W4285404671 abstract "With the flourishing of mobile Internet, the multimodal reviews (i.e., reviews with both texts and images) are becoming prevalent and playing an important role in customer decision makings. However, when making multimodal review helpfulness prediction (MRHP), it becomes difficult due to the information interaction between text and images. The information in review text (images) can be either complementary or substitutive to visual (textual) review information. Moreover, the text (images) itself may constitute the review’s diagnostic value predominantly in some cases, whereas they could be jointly perceived as useful by customers in others. In this study, we delve to conduct MRPH by modeling their text-image interactions. We proposed a novel multimodal deep learning method that exploits the complementation and substitution effects between text and images and further coordinates them for MRHP. Empirical evaluation on a large-scale online review dataset shows that our proposed method outperformed the benchmarks, indicating its powerful capability to predict the helpfulness of multimodal reviews. Exploratory analysis renders insights for understanding the complementary-substitutive interaction patterns between review text and images." @default.
- W4285404671 created "2022-07-14" @default.
- W4285404671 creator A5043981220 @default.
- W4285404671 creator A5045067652 @default.
- W4285404671 creator A5054674052 @default.
- W4285404671 creator A5065932618 @default.
- W4285404671 date "2022-12-01" @default.
- W4285404671 modified "2023-10-17" @default.
- W4285404671 title "Complementary or Substitutive? A Novel Deep Learning Method to Leverage Text-image Interactions for Multimodal Review Helpfulness Prediction" @default.
- W4285404671 cites W1064650781 @default.
- W4285404671 cites W1507780841 @default.
- W4285404671 cites W15476888 @default.
- W4285404671 cites W1965449946 @default.
- W4285404671 cites W1966503997 @default.
- W4285404671 cites W1967025894 @default.
- W4285404671 cites W1971328150 @default.
- W4285404671 cites W1985953330 @default.
- W4285404671 cites W2019983800 @default.
- W4285404671 cites W2026965805 @default.
- W4285404671 cites W2053101950 @default.
- W4285404671 cites W2076449540 @default.
- W4285404671 cites W2077395415 @default.
- W4285404671 cites W2087006430 @default.
- W4285404671 cites W2102631167 @default.
- W4285404671 cites W2113180829 @default.
- W4285404671 cites W2126894607 @default.
- W4285404671 cites W2136848157 @default.
- W4285404671 cites W2137959503 @default.
- W4285404671 cites W2141018272 @default.
- W4285404671 cites W2149610630 @default.
- W4285404671 cites W2583180839 @default.
- W4285404671 cites W2586885238 @default.
- W4285404671 cites W2609010594 @default.
- W4285404671 cites W2619383789 @default.
- W4285404671 cites W2726474813 @default.
- W4285404671 cites W2729161046 @default.
- W4285404671 cites W2764201218 @default.
- W4285404671 cites W2766647035 @default.
- W4285404671 cites W2780946198 @default.
- W4285404671 cites W2791015340 @default.
- W4285404671 cites W2793787528 @default.
- W4285404671 cites W2801315249 @default.
- W4285404671 cites W2801566476 @default.
- W4285404671 cites W2801693123 @default.
- W4285404671 cites W2907892213 @default.
- W4285404671 cites W2910191085 @default.
- W4285404671 cites W2965748866 @default.
- W4285404671 cites W2984184072 @default.
- W4285404671 cites W2989682680 @default.
- W4285404671 cites W2994658578 @default.
- W4285404671 cites W2994695630 @default.
- W4285404671 cites W2997334252 @default.
- W4285404671 cites W3032181922 @default.
- W4285404671 cites W3035035250 @default.
- W4285404671 cites W3039143791 @default.
- W4285404671 cites W3087228565 @default.
- W4285404671 cites W3088489425 @default.
- W4285404671 cites W3104351018 @default.
- W4285404671 cites W3122125470 @default.
- W4285404671 cites W3122724846 @default.
- W4285404671 cites W3124946654 @default.
- W4285404671 cites W3125189097 @default.
- W4285404671 cites W3125983399 @default.
- W4285404671 cites W3125993287 @default.
- W4285404671 cites W3141714916 @default.
- W4285404671 cites W3150796314 @default.
- W4285404671 cites W4255375128 @default.
- W4285404671 doi "https://doi.org/10.1016/j.eswa.2022.118138" @default.
- W4285404671 hasPublicationYear "2022" @default.
- W4285404671 type Work @default.
- W4285404671 citedByCount "7" @default.
- W4285404671 countsByYear W42854046712022 @default.
- W4285404671 countsByYear W42854046712023 @default.
- W4285404671 crossrefType "journal-article" @default.
- W4285404671 hasAuthorship W4285404671A5043981220 @default.
- W4285404671 hasAuthorship W4285404671A5045067652 @default.
- W4285404671 hasAuthorship W4285404671A5054674052 @default.
- W4285404671 hasAuthorship W4285404671A5065932618 @default.
- W4285404671 hasConcept C119857082 @default.
- W4285404671 hasConcept C153083717 @default.
- W4285404671 hasConcept C154945302 @default.
- W4285404671 hasConcept C15744967 @default.
- W4285404671 hasConcept C23123220 @default.
- W4285404671 hasConcept C2781265381 @default.
- W4285404671 hasConcept C41008148 @default.
- W4285404671 hasConcept C77805123 @default.
- W4285404671 hasConceptScore W4285404671C119857082 @default.
- W4285404671 hasConceptScore W4285404671C153083717 @default.
- W4285404671 hasConceptScore W4285404671C154945302 @default.
- W4285404671 hasConceptScore W4285404671C15744967 @default.
- W4285404671 hasConceptScore W4285404671C23123220 @default.
- W4285404671 hasConceptScore W4285404671C2781265381 @default.
- W4285404671 hasConceptScore W4285404671C41008148 @default.
- W4285404671 hasConceptScore W4285404671C77805123 @default.
- W4285404671 hasLocation W42854046711 @default.
- W4285404671 hasOpenAccess W4285404671 @default.
- W4285404671 hasPrimaryLocation W42854046711 @default.
- W4285404671 hasRelatedWork W2961085424 @default.