Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285404773> ?p ?o ?g. }
- W4285404773 endingPage "105" @default.
- W4285404773 startingPage "82" @default.
- W4285404773 abstract "The study of military spending has been an enduring concern within military sociology and political science. Methodologically, one of the biggest challenges lay in dealing with its heavy-tailed distribution influenced by the growing separation between China and the United States from the rest of the world. In the presence of outliers along the continuum of military expenditure, we should be paying more attention to portions of the distribution that don’t assume the values reported at the conditional mean. The article uses quantile regression modelling (QRM) to analyse the nuanced relationship between military expenditure and its predictors. It argues that classical linear regression produces average estimates that cannot predict values at different subsets of the data’s distribution, meanwhile QRM has relevant results in the search for noncentral values in the study of military expenditure often laying in the lower and the upper tails of the distribution." @default.
- W4285404773 created "2022-07-14" @default.
- W4285404773 creator A5084742349 @default.
- W4285404773 date "2022-07-01" @default.
- W4285404773 modified "2023-10-16" @default.
- W4285404773 title "Thinking beyond averages: Quantile regression modelling and military expenditure" @default.
- W4285404773 cites W1914482768 @default.
- W4285404773 cites W1970642168 @default.
- W4285404773 cites W1971761005 @default.
- W4285404773 cites W1977214992 @default.
- W4285404773 cites W1979646690 @default.
- W4285404773 cites W1985741291 @default.
- W4285404773 cites W1989954502 @default.
- W4285404773 cites W2024137671 @default.
- W4285404773 cites W2024504114 @default.
- W4285404773 cites W2029453410 @default.
- W4285404773 cites W2035369390 @default.
- W4285404773 cites W2055078415 @default.
- W4285404773 cites W2126613155 @default.
- W4285404773 cites W2128290062 @default.
- W4285404773 cites W2135570838 @default.
- W4285404773 cites W2157812114 @default.
- W4285404773 cites W2164020299 @default.
- W4285404773 cites W2280157485 @default.
- W4285404773 cites W2288966586 @default.
- W4285404773 cites W2346585928 @default.
- W4285404773 cites W2467315704 @default.
- W4285404773 cites W2512979079 @default.
- W4285404773 cites W2551857519 @default.
- W4285404773 cites W2580241219 @default.
- W4285404773 cites W2615621260 @default.
- W4285404773 cites W2756137634 @default.
- W4285404773 cites W2763534670 @default.
- W4285404773 cites W2767073761 @default.
- W4285404773 cites W2774767387 @default.
- W4285404773 cites W2778980827 @default.
- W4285404773 cites W2790925120 @default.
- W4285404773 cites W2794254170 @default.
- W4285404773 cites W2803883127 @default.
- W4285404773 cites W2884529246 @default.
- W4285404773 cites W2909000428 @default.
- W4285404773 cites W2945269063 @default.
- W4285404773 cites W2962458395 @default.
- W4285404773 cites W2971867645 @default.
- W4285404773 cites W2979743405 @default.
- W4285404773 cites W2980612469 @default.
- W4285404773 cites W2996281394 @default.
- W4285404773 cites W3010781515 @default.
- W4285404773 cites W3111147255 @default.
- W4285404773 cites W3125211645 @default.
- W4285404773 cites W3135565303 @default.
- W4285404773 cites W3148193229 @default.
- W4285404773 cites W3157968023 @default.
- W4285404773 cites W4232731667 @default.
- W4285404773 cites W4239893719 @default.
- W4285404773 cites W4241180815 @default.
- W4285404773 cites W4241246154 @default.
- W4285404773 cites W4241653265 @default.
- W4285404773 cites W4244490210 @default.
- W4285404773 cites W4246234845 @default.
- W4285404773 cites W4249452265 @default.
- W4285404773 cites W4255619213 @default.
- W4285404773 doi "https://doi.org/10.1177/07591063221103352" @default.
- W4285404773 hasPublicationYear "2022" @default.
- W4285404773 type Work @default.
- W4285404773 citedByCount "0" @default.
- W4285404773 crossrefType "journal-article" @default.
- W4285404773 hasAuthorship W4285404773A5084742349 @default.
- W4285404773 hasBestOaLocation W42854047732 @default.
- W4285404773 hasConcept C105795698 @default.
- W4285404773 hasConcept C110121322 @default.
- W4285404773 hasConcept C118671147 @default.
- W4285404773 hasConcept C134306372 @default.
- W4285404773 hasConcept C149782125 @default.
- W4285404773 hasConcept C162324750 @default.
- W4285404773 hasConcept C33923547 @default.
- W4285404773 hasConcept C48921125 @default.
- W4285404773 hasConcept C63817138 @default.
- W4285404773 hasConcept C79337645 @default.
- W4285404773 hasConceptScore W4285404773C105795698 @default.
- W4285404773 hasConceptScore W4285404773C110121322 @default.
- W4285404773 hasConceptScore W4285404773C118671147 @default.
- W4285404773 hasConceptScore W4285404773C134306372 @default.
- W4285404773 hasConceptScore W4285404773C149782125 @default.
- W4285404773 hasConceptScore W4285404773C162324750 @default.
- W4285404773 hasConceptScore W4285404773C33923547 @default.
- W4285404773 hasConceptScore W4285404773C48921125 @default.
- W4285404773 hasConceptScore W4285404773C63817138 @default.
- W4285404773 hasConceptScore W4285404773C79337645 @default.
- W4285404773 hasIssue "1" @default.
- W4285404773 hasLocation W42854047731 @default.
- W4285404773 hasLocation W42854047732 @default.
- W4285404773 hasOpenAccess W4285404773 @default.
- W4285404773 hasPrimaryLocation W42854047731 @default.
- W4285404773 hasRelatedWork W1584060637 @default.
- W4285404773 hasRelatedWork W1801096986 @default.
- W4285404773 hasRelatedWork W2054178695 @default.
- W4285404773 hasRelatedWork W2328874041 @default.