Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285404792> ?p ?o ?g. }
- W4285404792 endingPage "103977" @default.
- W4285404792 startingPage "103977" @default.
- W4285404792 abstract "Today, 2019 Coronavirus (COVID-19) infections are a major health concern worldwide. Therefore, detecting COVID-19 in X-ray images is crucial for diagnosis, evaluation, and treatment. Furthermore, expressing diagnostic uncertainty in a report is a challenging duty but unavoidable task for radiologists. This study proposes a novel CNN (Convolutional Neural Network) model for automatic COVID-19 identification utilizing chest X-ray images. The proposed CNN model is designed to be a reliable diagnostic tool for two-class categorization (COVID and Normal). In addition to the proposed model, different architectures, including the pre-trained MobileNetv2 and ResNet50 models, are evaluated for this COVID-19 dataset (13,824 X-ray images) and our suggested model is compared to these existing COVID-19 detection algorithms in terms of accuracy. Experimental results show that our proposed model identifies patients with COVID-19 disease with 96.71 percent accuracy, 91.89 percent F1-score. Our proposed approach CNN's experimental results show that it outperforms the most advanced algorithms currently available. This model can assist clinicians in making informed judgments on how to diagnose COVID-19, as well as make test kits more accessible." @default.
- W4285404792 created "2022-07-14" @default.
- W4285404792 creator A5044938921 @default.
- W4285404792 date "2022-09-01" @default.
- W4285404792 modified "2023-09-30" @default.
- W4285404792 title "Deep learning-based approach for detecting COVID-19 in chest X-rays" @default.
- W4285404792 cites W1967759374 @default.
- W4285404792 cites W2312602081 @default.
- W4285404792 cites W2323929895 @default.
- W4285404792 cites W2418101495 @default.
- W4285404792 cites W2433519208 @default.
- W4285404792 cites W2530121132 @default.
- W4285404792 cites W2532134290 @default.
- W4285404792 cites W2622826443 @default.
- W4285404792 cites W2788633781 @default.
- W4285404792 cites W2891756914 @default.
- W4285404792 cites W2921237545 @default.
- W4285404792 cites W2964744899 @default.
- W4285404792 cites W2972983890 @default.
- W4285404792 cites W2974888503 @default.
- W4285404792 cites W2997528981 @default.
- W4285404792 cites W3001118548 @default.
- W4285404792 cites W3002108456 @default.
- W4285404792 cites W3003465021 @default.
- W4285404792 cites W3003668884 @default.
- W4285404792 cites W3004906315 @default.
- W4285404792 cites W3005188470 @default.
- W4285404792 cites W3005656138 @default.
- W4285404792 cites W3006082171 @default.
- W4285404792 cites W3010182902 @default.
- W4285404792 cites W3010702679 @default.
- W4285404792 cites W3012116644 @default.
- W4285404792 cites W3012303644 @default.
- W4285404792 cites W3012751338 @default.
- W4285404792 cites W3013277995 @default.
- W4285404792 cites W3016610966 @default.
- W4285404792 cites W3017644243 @default.
- W4285404792 cites W3023402713 @default.
- W4285404792 cites W3024506939 @default.
- W4285404792 cites W3027682070 @default.
- W4285404792 cites W3030621456 @default.
- W4285404792 cites W3037538421 @default.
- W4285404792 cites W3087636224 @default.
- W4285404792 cites W3092353952 @default.
- W4285404792 cites W3101606529 @default.
- W4285404792 cites W3103635657 @default.
- W4285404792 cites W3105081694 @default.
- W4285404792 cites W3118372097 @default.
- W4285404792 cites W3120327591 @default.
- W4285404792 cites W3158118580 @default.
- W4285404792 cites W3165656738 @default.
- W4285404792 cites W3188684369 @default.
- W4285404792 cites W4205947740 @default.
- W4285404792 doi "https://doi.org/10.1016/j.bspc.2022.103977" @default.
- W4285404792 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35855833" @default.
- W4285404792 hasPublicationYear "2022" @default.
- W4285404792 type Work @default.
- W4285404792 citedByCount "15" @default.
- W4285404792 countsByYear W42854047922022 @default.
- W4285404792 countsByYear W42854047922023 @default.
- W4285404792 crossrefType "journal-article" @default.
- W4285404792 hasAuthorship W4285404792A5044938921 @default.
- W4285404792 hasBestOaLocation W42854047922 @default.
- W4285404792 hasConcept C108583219 @default.
- W4285404792 hasConcept C116675565 @default.
- W4285404792 hasConcept C116834253 @default.
- W4285404792 hasConcept C119857082 @default.
- W4285404792 hasConcept C142724271 @default.
- W4285404792 hasConcept C153180895 @default.
- W4285404792 hasConcept C154945302 @default.
- W4285404792 hasConcept C162324750 @default.
- W4285404792 hasConcept C187736073 @default.
- W4285404792 hasConcept C2779134260 @default.
- W4285404792 hasConcept C2780451532 @default.
- W4285404792 hasConcept C3006700255 @default.
- W4285404792 hasConcept C3007834351 @default.
- W4285404792 hasConcept C3008058167 @default.
- W4285404792 hasConcept C41008148 @default.
- W4285404792 hasConcept C524204448 @default.
- W4285404792 hasConcept C59822182 @default.
- W4285404792 hasConcept C71924100 @default.
- W4285404792 hasConcept C81363708 @default.
- W4285404792 hasConcept C86803240 @default.
- W4285404792 hasConcept C94124525 @default.
- W4285404792 hasConceptScore W4285404792C108583219 @default.
- W4285404792 hasConceptScore W4285404792C116675565 @default.
- W4285404792 hasConceptScore W4285404792C116834253 @default.
- W4285404792 hasConceptScore W4285404792C119857082 @default.
- W4285404792 hasConceptScore W4285404792C142724271 @default.
- W4285404792 hasConceptScore W4285404792C153180895 @default.
- W4285404792 hasConceptScore W4285404792C154945302 @default.
- W4285404792 hasConceptScore W4285404792C162324750 @default.
- W4285404792 hasConceptScore W4285404792C187736073 @default.
- W4285404792 hasConceptScore W4285404792C2779134260 @default.
- W4285404792 hasConceptScore W4285404792C2780451532 @default.
- W4285404792 hasConceptScore W4285404792C3006700255 @default.
- W4285404792 hasConceptScore W4285404792C3007834351 @default.
- W4285404792 hasConceptScore W4285404792C3008058167 @default.