Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285405115> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4285405115 endingPage "133020" @default.
- W4285405115 startingPage "133020" @default.
- W4285405115 abstract "Solid ashes constitute the world's leading environmental problem and their efficient recycling requires specific origin information. Chemical signatures encode the physicochemical and structural characteristics may reveal their origins. In this study, we collected 310 solid ash samples from various continents, countries, and origins and combined particle swarm optimization , random forest (RF), and novel interpretation methods to build an accurate ash origin detection system. The RF model took major oxides as inputs, without further feature-engineering, and automatically classified the solid ash into four origins. Our model predicted solid ash origins with 98.5% accuracy on a training set and with 91.5% accuracy on an independent testing set, even without expert knowledge of the operating conditions. Our approach also demonstrated feature importance and interpreted the decision-making mechanisms underlying optimum RF models. These results demonstrated the feasibility of the proposed modeling framework as a blueprint for automated machine-learning origin detection of solid ashes. • Chemical signatures were proposed for the origin identification of solid ashes. • Origin detection can promote the recovery of solid ashes. • A global solid ash dataset was collected by an extensive literature review. • The RF-PSO modeling framework can quickly and accurately estimate ash origin. • Interpretation techniques were used to reveal the decision-making of RF-PSO." @default.
- W4285405115 created "2022-07-14" @default.
- W4285405115 creator A5010219293 @default.
- W4285405115 creator A5041112199 @default.
- W4285405115 creator A5072932361 @default.
- W4285405115 creator A5077327739 @default.
- W4285405115 date "2022-09-01" @default.
- W4285405115 modified "2023-09-27" @default.
- W4285405115 title "Chemical signatures to identify the origin of solid ashes for efficient recycling using machine learning" @default.
- W4285405115 cites W2002174823 @default.
- W4285405115 cites W2030348458 @default.
- W4285405115 cites W2034692192 @default.
- W4285405115 cites W2048450370 @default.
- W4285405115 cites W2058742631 @default.
- W4285405115 cites W2111393363 @default.
- W4285405115 cites W2118840131 @default.
- W4285405115 cites W2128126619 @default.
- W4285405115 cites W2731142262 @default.
- W4285405115 cites W2785942661 @default.
- W4285405115 cites W2798223637 @default.
- W4285405115 cites W2911964244 @default.
- W4285405115 cites W3001031584 @default.
- W4285405115 cites W3010084065 @default.
- W4285405115 cites W3017044718 @default.
- W4285405115 cites W3028066085 @default.
- W4285405115 cites W3032409190 @default.
- W4285405115 cites W3034554183 @default.
- W4285405115 cites W3081089118 @default.
- W4285405115 cites W3091859967 @default.
- W4285405115 cites W3154919169 @default.
- W4285405115 cites W3158947599 @default.
- W4285405115 cites W3161825766 @default.
- W4285405115 cites W3165545618 @default.
- W4285405115 cites W3171096554 @default.
- W4285405115 cites W3188268176 @default.
- W4285405115 cites W3194657594 @default.
- W4285405115 cites W3201627685 @default.
- W4285405115 cites W4211246141 @default.
- W4285405115 cites W4212953723 @default.
- W4285405115 cites W4213348456 @default.
- W4285405115 cites W4236103016 @default.
- W4285405115 doi "https://doi.org/10.1016/j.jclepro.2022.133020" @default.
- W4285405115 hasPublicationYear "2022" @default.
- W4285405115 type Work @default.
- W4285405115 citedByCount "6" @default.
- W4285405115 countsByYear W42854051152022 @default.
- W4285405115 countsByYear W42854051152023 @default.
- W4285405115 crossrefType "journal-article" @default.
- W4285405115 hasAuthorship W4285405115A5010219293 @default.
- W4285405115 hasAuthorship W4285405115A5041112199 @default.
- W4285405115 hasAuthorship W4285405115A5072932361 @default.
- W4285405115 hasAuthorship W4285405115A5077327739 @default.
- W4285405115 hasConcept C119857082 @default.
- W4285405115 hasConcept C127413603 @default.
- W4285405115 hasConcept C21880701 @default.
- W4285405115 hasConcept C41008148 @default.
- W4285405115 hasConceptScore W4285405115C119857082 @default.
- W4285405115 hasConceptScore W4285405115C127413603 @default.
- W4285405115 hasConceptScore W4285405115C21880701 @default.
- W4285405115 hasConceptScore W4285405115C41008148 @default.
- W4285405115 hasFunder F4320321001 @default.
- W4285405115 hasLocation W42854051151 @default.
- W4285405115 hasOpenAccess W4285405115 @default.
- W4285405115 hasPrimaryLocation W42854051151 @default.
- W4285405115 hasRelatedWork W2130043461 @default.
- W4285405115 hasRelatedWork W2350741829 @default.
- W4285405115 hasRelatedWork W2358668433 @default.
- W4285405115 hasRelatedWork W2376932109 @default.
- W4285405115 hasRelatedWork W2382290278 @default.
- W4285405115 hasRelatedWork W2390279801 @default.
- W4285405115 hasRelatedWork W2748952813 @default.
- W4285405115 hasRelatedWork W2889453578 @default.
- W4285405115 hasRelatedWork W2899084033 @default.
- W4285405115 hasRelatedWork W2530322880 @default.
- W4285405115 hasVolume "368" @default.
- W4285405115 isParatext "false" @default.
- W4285405115 isRetracted "false" @default.
- W4285405115 workType "article" @default.