Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285405156> ?p ?o ?g. }
- W4285405156 endingPage "157290" @default.
- W4285405156 startingPage "157290" @default.
- W4285405156 abstract "Conventionally, odours emitted by different sources present in wastewater treatment plants (WWTPs) are measured by dynamic olfactometry, where a human panel sniffs and analyzes air bags collected from the plant. Although the method is considered the gold standard, the process is costly, slow, and infrequent, which does not allow operators to quickly identify and respond to problems. To better monitor and map WWTP odour emissions, here we propose a small rotary-wing drone equipped with a lightweight (1.3-kg) electronic nose. The sniffing drone sucks in air via a ten-meter (33-foot) tube and delivers it to a sensor chamber where it is analyzed in real-time by an array of 21 gas sensors. From the sensor signals, machine learning (ML) algorithms predict the odour concentration that a human panel using the EN13725 methodology would report. To calibrate and validate the predictive models, the drone also carries a remotely controlled sampling device (compliant with EN13725:2022) to collect sample air in bags for post-flight dynamic olfactometry. The feasibility of the proposed system is assessed in a WWTP in Spain through several measurement campaigns covering diverse operating regimes of the plant and meteorological conditions. We demonstrate that training the ML algorithms with dynamic (transient) sensor signals measured in flight conditions leads to better performance than the traditional approach of using steady-state signals measured in the lab via controlled exposures to odour bags. The comparison of the electronic nose predictions with dynamic olfactometry measurements indicates a negligible bias between the two measurement techniques and 95 % limits of agreement within a factor of four. This apparently large disagreement, partly caused by the high uncertainty of olfactometric measurements (typically a factor of two), is more than offset by the immediacy of the predictions and the practical advantages of using a drone-based system." @default.
- W4285405156 created "2022-07-14" @default.
- W4285405156 creator A5009042577 @default.
- W4285405156 creator A5017696252 @default.
- W4285405156 creator A5053202017 @default.
- W4285405156 creator A5063466955 @default.
- W4285405156 creator A5076481446 @default.
- W4285405156 date "2022-11-01" @default.
- W4285405156 modified "2023-10-07" @default.
- W4285405156 title "Characterization of odour emissions in a wastewater treatment plant using a drone-based chemical sensor system" @default.
- W4285405156 cites W102939424 @default.
- W4285405156 cites W1775802302 @default.
- W4285405156 cites W1983807644 @default.
- W4285405156 cites W1987864869 @default.
- W4285405156 cites W1996195892 @default.
- W4285405156 cites W2028858984 @default.
- W4285405156 cites W2045341272 @default.
- W4285405156 cites W2047802029 @default.
- W4285405156 cites W2085863478 @default.
- W4285405156 cites W2090790364 @default.
- W4285405156 cites W2097615965 @default.
- W4285405156 cites W2098308694 @default.
- W4285405156 cites W2098722265 @default.
- W4285405156 cites W2118426491 @default.
- W4285405156 cites W2128174730 @default.
- W4285405156 cites W2159759971 @default.
- W4285405156 cites W2734982659 @default.
- W4285405156 cites W2766250962 @default.
- W4285405156 cites W2899296752 @default.
- W4285405156 cites W2913038313 @default.
- W4285405156 cites W2945023942 @default.
- W4285405156 cites W2995831985 @default.
- W4285405156 cites W2999575282 @default.
- W4285405156 cites W2999809186 @default.
- W4285405156 cites W3012429631 @default.
- W4285405156 cites W3044263433 @default.
- W4285405156 cites W3157494057 @default.
- W4285405156 cites W3211529262 @default.
- W4285405156 doi "https://doi.org/10.1016/j.scitotenv.2022.157290" @default.
- W4285405156 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35839880" @default.
- W4285405156 hasPublicationYear "2022" @default.
- W4285405156 type Work @default.
- W4285405156 citedByCount "5" @default.
- W4285405156 countsByYear W42854051562022 @default.
- W4285405156 countsByYear W42854051562023 @default.
- W4285405156 crossrefType "journal-article" @default.
- W4285405156 hasAuthorship W4285405156A5009042577 @default.
- W4285405156 hasAuthorship W4285405156A5017696252 @default.
- W4285405156 hasAuthorship W4285405156A5053202017 @default.
- W4285405156 hasAuthorship W4285405156A5063466955 @default.
- W4285405156 hasAuthorship W4285405156A5076481446 @default.
- W4285405156 hasBestOaLocation W42854051561 @default.
- W4285405156 hasConcept C106131492 @default.
- W4285405156 hasConcept C127413603 @default.
- W4285405156 hasConcept C140779682 @default.
- W4285405156 hasConcept C154945302 @default.
- W4285405156 hasConcept C171146098 @default.
- W4285405156 hasConcept C178790620 @default.
- W4285405156 hasConcept C185592680 @default.
- W4285405156 hasConcept C23895516 @default.
- W4285405156 hasConcept C2778916471 @default.
- W4285405156 hasConcept C2909303944 @default.
- W4285405156 hasConcept C31972630 @default.
- W4285405156 hasConcept C39432304 @default.
- W4285405156 hasConcept C41008148 @default.
- W4285405156 hasConcept C44154836 @default.
- W4285405156 hasConcept C54355233 @default.
- W4285405156 hasConcept C59519942 @default.
- W4285405156 hasConcept C86803240 @default.
- W4285405156 hasConceptScore W4285405156C106131492 @default.
- W4285405156 hasConceptScore W4285405156C127413603 @default.
- W4285405156 hasConceptScore W4285405156C140779682 @default.
- W4285405156 hasConceptScore W4285405156C154945302 @default.
- W4285405156 hasConceptScore W4285405156C171146098 @default.
- W4285405156 hasConceptScore W4285405156C178790620 @default.
- W4285405156 hasConceptScore W4285405156C185592680 @default.
- W4285405156 hasConceptScore W4285405156C23895516 @default.
- W4285405156 hasConceptScore W4285405156C2778916471 @default.
- W4285405156 hasConceptScore W4285405156C2909303944 @default.
- W4285405156 hasConceptScore W4285405156C31972630 @default.
- W4285405156 hasConceptScore W4285405156C39432304 @default.
- W4285405156 hasConceptScore W4285405156C41008148 @default.
- W4285405156 hasConceptScore W4285405156C44154836 @default.
- W4285405156 hasConceptScore W4285405156C54355233 @default.
- W4285405156 hasConceptScore W4285405156C59519942 @default.
- W4285405156 hasConceptScore W4285405156C86803240 @default.
- W4285405156 hasFunder F4320320300 @default.
- W4285405156 hasLocation W42854051561 @default.
- W4285405156 hasLocation W42854051562 @default.
- W4285405156 hasLocation W42854051563 @default.
- W4285405156 hasOpenAccess W4285405156 @default.
- W4285405156 hasPrimaryLocation W42854051561 @default.
- W4285405156 hasRelatedWork W2012739920 @default.
- W4285405156 hasRelatedWork W2078855081 @default.
- W4285405156 hasRelatedWork W2544176064 @default.
- W4285405156 hasRelatedWork W2976606862 @default.
- W4285405156 hasRelatedWork W4206885485 @default.
- W4285405156 hasRelatedWork W4229448053 @default.