Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285405183> ?p ?o ?g. }
- W4285405183 endingPage "117953" @default.
- W4285405183 startingPage "117953" @default.
- W4285405183 abstract "With the rise in popularity of social media platforms and online forums, they have become a global source of news. Fake News (FNs) spreading through numerous institutions and sectors jeopardizes their reputations, causing users to abandon these platforms. Therefore, there is a huge pool of research in the area of Artificial Intelligence (AI) techniques that are used to detect FNs. Previously, great focus was given to online review classification and free internet posts based on social networks. This research proposes a Deep Learning-based FNs Detection method. This paper proposes a Deep Learning (DL)-based method for detecting FNs. The proposed system consists of three phases; text encoding, feature extraction, and classification. The text encoding process is carried out on the input news words using GLOVE for word representation. The encoded words are then embedded into a specific word length in order to be enrolled in the proposed DL models. The proposed DL models comprise both automatic feature extraction and classification tasks. Furthermore, this study proposes four different DL models, including Convolutional Neural Networks (CNNs) and Concatenated CNNs (C-CNNs), long short-term memory (LSTM), and Gated Recurrent Units, to find an optimal model prior to the section of FNs that outperforms previous works.The proposed DL models are carried out on FNs and FNC datasets which are provided by kaggle, and the suggested C-CNNs algorithm obtained an accuracy of 99.6% and trained faster than others. Multiple evaluation metrics such as precision, recall, F1, and accuracy have been utilized to evaluate the outcome of the proposed models. The experimental results demonstrated overall improvements in the subject of FND when compared with the current models and validated the potential of the proposed methodology for the detection of FNs on Social Media (SM). This study will help researchers to broaden the knowledge of applications of CNNs based on DL methods for FND." @default.
- W4285405183 created "2022-07-14" @default.
- W4285405183 creator A5012051592 @default.
- W4285405183 creator A5023917652 @default.
- W4285405183 creator A5030873926 @default.
- W4285405183 creator A5059775848 @default.
- W4285405183 creator A5066074266 @default.
- W4285405183 date "2022-12-01" @default.
- W4285405183 modified "2023-09-30" @default.
- W4285405183 title "Deep fake news detection system based on concatenated and recurrent modalities" @default.
- W4285405183 cites W2072240081 @default.
- W4285405183 cites W2250539671 @default.
- W4285405183 cites W2584429674 @default.
- W4285405183 cites W2809476703 @default.
- W4285405183 cites W2944575651 @default.
- W4285405183 cites W2962717349 @default.
- W4285405183 cites W2968549889 @default.
- W4285405183 cites W2980986395 @default.
- W4285405183 cites W2984545517 @default.
- W4285405183 cites W3000155280 @default.
- W4285405183 cites W3001895040 @default.
- W4285405183 cites W3002801259 @default.
- W4285405183 cites W3022024046 @default.
- W4285405183 cites W3027756743 @default.
- W4285405183 cites W3036963250 @default.
- W4285405183 cites W3052930805 @default.
- W4285405183 cites W3080295236 @default.
- W4285405183 cites W3101890897 @default.
- W4285405183 cites W3101908935 @default.
- W4285405183 cites W3102281673 @default.
- W4285405183 cites W3103872969 @default.
- W4285405183 cites W3103912187 @default.
- W4285405183 cites W3107058614 @default.
- W4285405183 cites W3110713756 @default.
- W4285405183 cites W3119962516 @default.
- W4285405183 cites W3124863924 @default.
- W4285405183 cites W3130398963 @default.
- W4285405183 cites W3130666089 @default.
- W4285405183 cites W3137820162 @default.
- W4285405183 cites W3138953784 @default.
- W4285405183 cites W3148001275 @default.
- W4285405183 cites W3152994406 @default.
- W4285405183 cites W3155963088 @default.
- W4285405183 cites W3160229356 @default.
- W4285405183 cites W3167530307 @default.
- W4285405183 cites W3173919134 @default.
- W4285405183 cites W3199468579 @default.
- W4285405183 doi "https://doi.org/10.1016/j.eswa.2022.117953" @default.
- W4285405183 hasPublicationYear "2022" @default.
- W4285405183 type Work @default.
- W4285405183 citedByCount "3" @default.
- W4285405183 countsByYear W42854051832023 @default.
- W4285405183 crossrefType "journal-article" @default.
- W4285405183 hasAuthorship W4285405183A5012051592 @default.
- W4285405183 hasAuthorship W4285405183A5023917652 @default.
- W4285405183 hasAuthorship W4285405183A5030873926 @default.
- W4285405183 hasAuthorship W4285405183A5059775848 @default.
- W4285405183 hasAuthorship W4285405183A5066074266 @default.
- W4285405183 hasConcept C108583219 @default.
- W4285405183 hasConcept C119857082 @default.
- W4285405183 hasConcept C120665830 @default.
- W4285405183 hasConcept C121332964 @default.
- W4285405183 hasConcept C125411270 @default.
- W4285405183 hasConcept C136764020 @default.
- W4285405183 hasConcept C138885662 @default.
- W4285405183 hasConcept C147168706 @default.
- W4285405183 hasConcept C154945302 @default.
- W4285405183 hasConcept C15744967 @default.
- W4285405183 hasConcept C192209626 @default.
- W4285405183 hasConcept C2776401178 @default.
- W4285405183 hasConcept C2780586970 @default.
- W4285405183 hasConcept C41008148 @default.
- W4285405183 hasConcept C41895202 @default.
- W4285405183 hasConcept C50644808 @default.
- W4285405183 hasConcept C518677369 @default.
- W4285405183 hasConcept C52622490 @default.
- W4285405183 hasConcept C77805123 @default.
- W4285405183 hasConcept C81363708 @default.
- W4285405183 hasConceptScore W4285405183C108583219 @default.
- W4285405183 hasConceptScore W4285405183C119857082 @default.
- W4285405183 hasConceptScore W4285405183C120665830 @default.
- W4285405183 hasConceptScore W4285405183C121332964 @default.
- W4285405183 hasConceptScore W4285405183C125411270 @default.
- W4285405183 hasConceptScore W4285405183C136764020 @default.
- W4285405183 hasConceptScore W4285405183C138885662 @default.
- W4285405183 hasConceptScore W4285405183C147168706 @default.
- W4285405183 hasConceptScore W4285405183C154945302 @default.
- W4285405183 hasConceptScore W4285405183C15744967 @default.
- W4285405183 hasConceptScore W4285405183C192209626 @default.
- W4285405183 hasConceptScore W4285405183C2776401178 @default.
- W4285405183 hasConceptScore W4285405183C2780586970 @default.
- W4285405183 hasConceptScore W4285405183C41008148 @default.
- W4285405183 hasConceptScore W4285405183C41895202 @default.
- W4285405183 hasConceptScore W4285405183C50644808 @default.
- W4285405183 hasConceptScore W4285405183C518677369 @default.
- W4285405183 hasConceptScore W4285405183C52622490 @default.
- W4285405183 hasConceptScore W4285405183C77805123 @default.
- W4285405183 hasConceptScore W4285405183C81363708 @default.