Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285405288> ?p ?o ?g. }
- W4285405288 endingPage "178" @default.
- W4285405288 startingPage "165" @default.
- W4285405288 abstract "Multi-metric learning plays a significant role in improving the generalization of algorithms related to distance metrics since using a single metric is sometimes insufficient to handle complex data. Metric learning can adjust automatically the distance between samples to make the intra-class samples compact while making the inter-class distance as far as possible. To implement this intention better,in this work, we propose a novel multi-metric learning framework based on the pair constraints instead of triple constraints to reduce computational burden. To solve effectively the problem, we first propose a multi-birth metric learning model (termed MBML), where for each class sample, the global metric and a local metric are jointly trained. Both global and local structural information are adapted to better depict sample information. Then two alternating iterative algorithms are developed to optimize the MBML. The convergence of the proposed algorithm and complexity are analyzed theoretically. Moreover, a fast diagonal multi-metric learning method is proposed based on binary constraints, and problem can be reformulated a linear programming, with fast training speed, low the computational burden and the global optimal solutions. Numerical experiments are carried out on different scales and different types of datasets including an artificial data, benchmark datasets and an image database from binary class and multi-class problems. Experiment results confirm the feasibility and effectiveness of the proposed methods." @default.
- W4285405288 created "2022-07-14" @default.
- W4285405288 creator A5008708998 @default.
- W4285405288 creator A5021689917 @default.
- W4285405288 creator A5032961377 @default.
- W4285405288 creator A5074912955 @default.
- W4285405288 date "2022-10-01" @default.
- W4285405288 modified "2023-10-08" @default.
- W4285405288 title "A multi-birth metric learning framework based on binary constraints" @default.
- W4285405288 cites W1540155273 @default.
- W4285405288 cites W1540764732 @default.
- W4285405288 cites W1978452970 @default.
- W4285405288 cites W2015966799 @default.
- W4285405288 cites W2039434802 @default.
- W4285405288 cites W2050201048 @default.
- W4285405288 cites W2090579338 @default.
- W4285405288 cites W2091632079 @default.
- W4285405288 cites W2161051904 @default.
- W4285405288 cites W2169495281 @default.
- W4285405288 cites W2206609956 @default.
- W4285405288 cites W2278012135 @default.
- W4285405288 cites W2279365017 @default.
- W4285405288 cites W2546918006 @default.
- W4285405288 cites W2555454054 @default.
- W4285405288 cites W2587382559 @default.
- W4285405288 cites W2734621611 @default.
- W4285405288 cites W2799984492 @default.
- W4285405288 cites W2802331540 @default.
- W4285405288 cites W2808979505 @default.
- W4285405288 cites W2889341738 @default.
- W4285405288 cites W2900211993 @default.
- W4285405288 cites W2916117399 @default.
- W4285405288 cites W2966838943 @default.
- W4285405288 cites W3025754292 @default.
- W4285405288 cites W3157870166 @default.
- W4285405288 doi "https://doi.org/10.1016/j.neunet.2022.07.004" @default.
- W4285405288 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35882084" @default.
- W4285405288 hasPublicationYear "2022" @default.
- W4285405288 type Work @default.
- W4285405288 citedByCount "1" @default.
- W4285405288 countsByYear W42854052882023 @default.
- W4285405288 crossrefType "journal-article" @default.
- W4285405288 hasAuthorship W4285405288A5008708998 @default.
- W4285405288 hasAuthorship W4285405288A5021689917 @default.
- W4285405288 hasAuthorship W4285405288A5032961377 @default.
- W4285405288 hasAuthorship W4285405288A5074912955 @default.
- W4285405288 hasConcept C11413529 @default.
- W4285405288 hasConcept C119857082 @default.
- W4285405288 hasConcept C126255220 @default.
- W4285405288 hasConcept C13280743 @default.
- W4285405288 hasConcept C134306372 @default.
- W4285405288 hasConcept C154945302 @default.
- W4285405288 hasConcept C162324750 @default.
- W4285405288 hasConcept C176217482 @default.
- W4285405288 hasConcept C177148314 @default.
- W4285405288 hasConcept C185798385 @default.
- W4285405288 hasConcept C205649164 @default.
- W4285405288 hasConcept C21547014 @default.
- W4285405288 hasConcept C2777212361 @default.
- W4285405288 hasConcept C2777303404 @default.
- W4285405288 hasConcept C33923547 @default.
- W4285405288 hasConcept C41008148 @default.
- W4285405288 hasConcept C48372109 @default.
- W4285405288 hasConcept C50522688 @default.
- W4285405288 hasConcept C94375191 @default.
- W4285405288 hasConceptScore W4285405288C11413529 @default.
- W4285405288 hasConceptScore W4285405288C119857082 @default.
- W4285405288 hasConceptScore W4285405288C126255220 @default.
- W4285405288 hasConceptScore W4285405288C13280743 @default.
- W4285405288 hasConceptScore W4285405288C134306372 @default.
- W4285405288 hasConceptScore W4285405288C154945302 @default.
- W4285405288 hasConceptScore W4285405288C162324750 @default.
- W4285405288 hasConceptScore W4285405288C176217482 @default.
- W4285405288 hasConceptScore W4285405288C177148314 @default.
- W4285405288 hasConceptScore W4285405288C185798385 @default.
- W4285405288 hasConceptScore W4285405288C205649164 @default.
- W4285405288 hasConceptScore W4285405288C21547014 @default.
- W4285405288 hasConceptScore W4285405288C2777212361 @default.
- W4285405288 hasConceptScore W4285405288C2777303404 @default.
- W4285405288 hasConceptScore W4285405288C33923547 @default.
- W4285405288 hasConceptScore W4285405288C41008148 @default.
- W4285405288 hasConceptScore W4285405288C48372109 @default.
- W4285405288 hasConceptScore W4285405288C50522688 @default.
- W4285405288 hasConceptScore W4285405288C94375191 @default.
- W4285405288 hasFunder F4320321001 @default.
- W4285405288 hasLocation W42854052881 @default.
- W4285405288 hasLocation W42854052882 @default.
- W4285405288 hasOpenAccess W4285405288 @default.
- W4285405288 hasPrimaryLocation W42854052881 @default.
- W4285405288 hasRelatedWork W112744582 @default.
- W4285405288 hasRelatedWork W1485630101 @default.
- W4285405288 hasRelatedWork W2089594643 @default.
- W4285405288 hasRelatedWork W2498017833 @default.
- W4285405288 hasRelatedWork W2961085424 @default.
- W4285405288 hasRelatedWork W2966858528 @default.
- W4285405288 hasRelatedWork W3192902148 @default.
- W4285405288 hasRelatedWork W4221150964 @default.
- W4285405288 hasRelatedWork W4306674287 @default.