Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285405377> ?p ?o ?g. }
- W4285405377 endingPage "1789" @default.
- W4285405377 startingPage "1781" @default.
- W4285405377 abstract "Precise localization of the site of origin of premature ventricular contractions (PVCs) before ablation can facilitate the planning and execution of the electrophysiological procedure.The purpose of this study was to develop a predictive model that can be used to differentiate PVCs between the left ventricular outflow tract and right ventricular outflow tract (RVOT) using surface electrocardiogram characteristics.A total of 851 patients undergoing radiofrequency ablation of premature ventricular beats from January 2015 to March 2022 were enrolled. Ninety-two patients were excluded. The other 759 patients were enrolled into the development (n = 605), external validation (n = 104), or prospective cohort (n = 50). The development cohort consisted of the training group (n = 423) and the internal validation group (n = 182). Machine learning algorithms were used to construct predictive models for the origin of PVCs using body surface electrocardiogram features.In the development cohort, the Random Forest model showed a maximum receiver operating characteristic curve area of 0.96. In the external validation cohort, the Random Forest model surpasses 4 reported algorithms in predicting performance (accuracy 94.23%; sensitivity 97.10%; specificity 88.57%). In the prospective cohort, the Random Forest model showed good performance (accuracy 94.00%; sensitivity 85.71%; specificity 97.22%).Random Forest algorithm has improved the accuracy of distinguishing the origin of PVCs, which surpasses 4 previous standards, and would be used to identify the origin of PVCs before the interventional procedure." @default.
- W4285405377 created "2022-07-14" @default.
- W4285405377 creator A5008613026 @default.
- W4285405377 creator A5014840053 @default.
- W4285405377 creator A5014884811 @default.
- W4285405377 creator A5015136513 @default.
- W4285405377 creator A5015833745 @default.
- W4285405377 creator A5026684550 @default.
- W4285405377 creator A5028638813 @default.
- W4285405377 creator A5040604862 @default.
- W4285405377 creator A5045548513 @default.
- W4285405377 creator A5045680138 @default.
- W4285405377 creator A5057209439 @default.
- W4285405377 creator A5064598658 @default.
- W4285405377 creator A5065969695 @default.
- W4285405377 creator A5067852408 @default.
- W4285405377 creator A5077719466 @default.
- W4285405377 creator A5079038444 @default.
- W4285405377 date "2022-11-01" @default.
- W4285405377 modified "2023-09-23" @default.
- W4285405377 title "Machine learning for distinguishing right from left premature ventricular contraction origin using surface electrocardiogram features" @default.
- W4285405377 cites W1712564456 @default.
- W4285405377 cites W1964888880 @default.
- W4285405377 cites W1983659865 @default.
- W4285405377 cites W2016110293 @default.
- W4285405377 cites W2028572898 @default.
- W4285405377 cites W2069388901 @default.
- W4285405377 cites W2071751741 @default.
- W4285405377 cites W2121257310 @default.
- W4285405377 cites W2123785188 @default.
- W4285405377 cites W2129226494 @default.
- W4285405377 cites W2135318242 @default.
- W4285405377 cites W2136603123 @default.
- W4285405377 cites W2549857822 @default.
- W4285405377 cites W2560629614 @default.
- W4285405377 cites W2743269518 @default.
- W4285405377 cites W2745944099 @default.
- W4285405377 cites W2793643126 @default.
- W4285405377 cites W2808348275 @default.
- W4285405377 cites W2883837249 @default.
- W4285405377 cites W2901683778 @default.
- W4285405377 cites W2949956784 @default.
- W4285405377 cites W2981135546 @default.
- W4285405377 cites W3012687466 @default.
- W4285405377 cites W3019062669 @default.
- W4285405377 cites W3104734424 @default.
- W4285405377 cites W3112904546 @default.
- W4285405377 doi "https://doi.org/10.1016/j.hrthm.2022.07.010" @default.
- W4285405377 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35843464" @default.
- W4285405377 hasPublicationYear "2022" @default.
- W4285405377 type Work @default.
- W4285405377 citedByCount "6" @default.
- W4285405377 countsByYear W42854053772022 @default.
- W4285405377 countsByYear W42854053772023 @default.
- W4285405377 crossrefType "journal-article" @default.
- W4285405377 hasAuthorship W4285405377A5008613026 @default.
- W4285405377 hasAuthorship W4285405377A5014840053 @default.
- W4285405377 hasAuthorship W4285405377A5014884811 @default.
- W4285405377 hasAuthorship W4285405377A5015136513 @default.
- W4285405377 hasAuthorship W4285405377A5015833745 @default.
- W4285405377 hasAuthorship W4285405377A5026684550 @default.
- W4285405377 hasAuthorship W4285405377A5028638813 @default.
- W4285405377 hasAuthorship W4285405377A5040604862 @default.
- W4285405377 hasAuthorship W4285405377A5045548513 @default.
- W4285405377 hasAuthorship W4285405377A5045680138 @default.
- W4285405377 hasAuthorship W4285405377A5057209439 @default.
- W4285405377 hasAuthorship W4285405377A5064598658 @default.
- W4285405377 hasAuthorship W4285405377A5065969695 @default.
- W4285405377 hasAuthorship W4285405377A5067852408 @default.
- W4285405377 hasAuthorship W4285405377A5077719466 @default.
- W4285405377 hasAuthorship W4285405377A5079038444 @default.
- W4285405377 hasConcept C11413529 @default.
- W4285405377 hasConcept C119857082 @default.
- W4285405377 hasConcept C126322002 @default.
- W4285405377 hasConcept C164705383 @default.
- W4285405377 hasConcept C169258074 @default.
- W4285405377 hasConcept C188816634 @default.
- W4285405377 hasConcept C2777361368 @default.
- W4285405377 hasConcept C2777377203 @default.
- W4285405377 hasConcept C2777501473 @default.
- W4285405377 hasConcept C2778902805 @default.
- W4285405377 hasConcept C2780040984 @default.
- W4285405377 hasConcept C41008148 @default.
- W4285405377 hasConcept C58471807 @default.
- W4285405377 hasConcept C71924100 @default.
- W4285405377 hasConcept C72563966 @default.
- W4285405377 hasConceptScore W4285405377C11413529 @default.
- W4285405377 hasConceptScore W4285405377C119857082 @default.
- W4285405377 hasConceptScore W4285405377C126322002 @default.
- W4285405377 hasConceptScore W4285405377C164705383 @default.
- W4285405377 hasConceptScore W4285405377C169258074 @default.
- W4285405377 hasConceptScore W4285405377C188816634 @default.
- W4285405377 hasConceptScore W4285405377C2777361368 @default.
- W4285405377 hasConceptScore W4285405377C2777377203 @default.
- W4285405377 hasConceptScore W4285405377C2777501473 @default.
- W4285405377 hasConceptScore W4285405377C2778902805 @default.
- W4285405377 hasConceptScore W4285405377C2780040984 @default.
- W4285405377 hasConceptScore W4285405377C41008148 @default.