Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285407512> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4285407512 abstract "Covid-19 is still running rampant around the globe. With the recent emergence of rapidly spreading variants, the necessity for testing becomes ever more acute. In this study, firstly, a deep learning based framework is proposed to conduct both a binary and multi-class classification of chest X-ray images to detect Covid-19 in order to meet the demands of swift, accurate testing worldwide. It is carried out using Convolutional Neural Networks to comprehensively examine the Covid-19 Chest X-ray dataset in conjunction with X-ray images of lungs with pneumonia. The architecture developed for the classification process is termed as CovidNet and its performance is compared with the existing Vgg16 architecture. Secondly, in order to obtain an enhanced performance, the proposed CovidNet is coupled with the Vgg16 architecture by means of ensembling to produce the Covid-EnsembleNet model. In the binary classification process, the developed CovidNet architecture results in a test accuracy of 99.12% while the Vgg16 architecture performs with a 99.34% accuracy. The Covid-EnsembleNet yields an accuracy of 99.56% in this process thereby bolstering the proposed model. Afterwards, in the multi-class classification process the CovidNet achieves a test accuracy of 94.96 % with the Vgg16 achieving a test accuracy of 96.75%. The proposed ensemble model Covid-EnsembleNet yields a test accuracy 97.56 %, thereby, outperforming both the CovidNet and existing Vgg16 architecture in both types of classification." @default.
- W4285407512 created "2022-07-14" @default.
- W4285407512 creator A5044623296 @default.
- W4285407512 creator A5052686948 @default.
- W4285407512 creator A5056181527 @default.
- W4285407512 creator A5062771112 @default.
- W4285407512 creator A5079952260 @default.
- W4285407512 date "2022-06-06" @default.
- W4285407512 modified "2023-09-26" @default.
- W4285407512 title "Covid-EnsembleNet: An Ensemble Based Approach for Detecting Covid-19 by utilising Chest X-ray Images" @default.
- W4285407512 cites W2919115771 @default.
- W4285407512 cites W2991391304 @default.
- W4285407512 cites W3012084069 @default.
- W4285407512 cites W3013601031 @default.
- W4285407512 cites W3017855299 @default.
- W4285407512 cites W3026059552 @default.
- W4285407512 cites W3033616466 @default.
- W4285407512 cites W3036908895 @default.
- W4285407512 cites W3157400239 @default.
- W4285407512 cites W3207549851 @default.
- W4285407512 cites W3018802176 @default.
- W4285407512 doi "https://doi.org/10.1109/aiiot54504.2022.9817237" @default.
- W4285407512 hasPublicationYear "2022" @default.
- W4285407512 type Work @default.
- W4285407512 citedByCount "8" @default.
- W4285407512 countsByYear W42854075122022 @default.
- W4285407512 countsByYear W42854075122023 @default.
- W4285407512 crossrefType "proceedings-article" @default.
- W4285407512 hasAuthorship W4285407512A5044623296 @default.
- W4285407512 hasAuthorship W4285407512A5052686948 @default.
- W4285407512 hasAuthorship W4285407512A5056181527 @default.
- W4285407512 hasAuthorship W4285407512A5062771112 @default.
- W4285407512 hasAuthorship W4285407512A5079952260 @default.
- W4285407512 hasConcept C111919701 @default.
- W4285407512 hasConcept C119857082 @default.
- W4285407512 hasConcept C123657996 @default.
- W4285407512 hasConcept C142362112 @default.
- W4285407512 hasConcept C142724271 @default.
- W4285407512 hasConcept C153180895 @default.
- W4285407512 hasConcept C153349607 @default.
- W4285407512 hasConcept C154945302 @default.
- W4285407512 hasConcept C2779134260 @default.
- W4285407512 hasConcept C3008058167 @default.
- W4285407512 hasConcept C41008148 @default.
- W4285407512 hasConcept C524204448 @default.
- W4285407512 hasConcept C71924100 @default.
- W4285407512 hasConcept C81363708 @default.
- W4285407512 hasConcept C98045186 @default.
- W4285407512 hasConceptScore W4285407512C111919701 @default.
- W4285407512 hasConceptScore W4285407512C119857082 @default.
- W4285407512 hasConceptScore W4285407512C123657996 @default.
- W4285407512 hasConceptScore W4285407512C142362112 @default.
- W4285407512 hasConceptScore W4285407512C142724271 @default.
- W4285407512 hasConceptScore W4285407512C153180895 @default.
- W4285407512 hasConceptScore W4285407512C153349607 @default.
- W4285407512 hasConceptScore W4285407512C154945302 @default.
- W4285407512 hasConceptScore W4285407512C2779134260 @default.
- W4285407512 hasConceptScore W4285407512C3008058167 @default.
- W4285407512 hasConceptScore W4285407512C41008148 @default.
- W4285407512 hasConceptScore W4285407512C524204448 @default.
- W4285407512 hasConceptScore W4285407512C71924100 @default.
- W4285407512 hasConceptScore W4285407512C81363708 @default.
- W4285407512 hasConceptScore W4285407512C98045186 @default.
- W4285407512 hasLocation W42854075121 @default.
- W4285407512 hasOpenAccess W4285407512 @default.
- W4285407512 hasPrimaryLocation W42854075121 @default.
- W4285407512 hasRelatedWork W2175746458 @default.
- W4285407512 hasRelatedWork W2732542196 @default.
- W4285407512 hasRelatedWork W2738221750 @default.
- W4285407512 hasRelatedWork W2760085659 @default.
- W4285407512 hasRelatedWork W2901346193 @default.
- W4285407512 hasRelatedWork W3027997911 @default.
- W4285407512 hasRelatedWork W3081496756 @default.
- W4285407512 hasRelatedWork W3093612317 @default.
- W4285407512 hasRelatedWork W4287776258 @default.
- W4285407512 hasRelatedWork W564581980 @default.
- W4285407512 isParatext "false" @default.
- W4285407512 isRetracted "false" @default.
- W4285407512 workType "article" @default.