Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285408072> ?p ?o ?g. }
- W4285408072 endingPage "249" @default.
- W4285408072 startingPage "231" @default.
- W4285408072 abstract "In the fields of image restoration and image fusion, model- and data-driven methods are the two representative frameworks. However, both approaches have their respective advantages and disadvantages. Model-driven techniques consider the imaging mechanism, which is deterministic and theoretically reasonable; however, they cannot easily model complicated nonlinear problems. Data-driven schemes have a stronger prior-knowledge learning capability for huge data, especially for nonlinear statistical features; however, the interpretability of the networks is poor, and they are overdependent on training data. In this article, we systematically investigate the coupling of model- and data-driven methods, which has rarely been considered in the remote sensing image restoration and fusion communities. We are the first to summarize the coupling approaches into the following three categories: 1) data- and model-driven cascading methods, 2) variational models with embedded learning, and 3) model-constrained network learning methods. The typical existing and potential coupling techniques for remote sensing image restoration and fusion are introduced with application examples. This article also gives some new insights into potential future directions, in terms of both methods and applications." @default.
- W4285408072 created "2022-07-14" @default.
- W4285408072 creator A5007897858 @default.
- W4285408072 creator A5036283525 @default.
- W4285408072 creator A5047576305 @default.
- W4285408072 creator A5064776886 @default.
- W4285408072 creator A5068252474 @default.
- W4285408072 creator A5085035578 @default.
- W4285408072 date "2022-06-01" @default.
- W4285408072 modified "2023-10-15" @default.
- W4285408072 title "Coupling Model- and Data-Driven Methods for Remote Sensing Image Restoration and Fusion: Improving physical interpretability" @default.
- W4285408072 cites W1655403841 @default.
- W4285408072 cites W1978125380 @default.
- W4285408072 cites W1980038761 @default.
- W4285408072 cites W1998339281 @default.
- W4285408072 cites W2014316959 @default.
- W4285408072 cites W2021348799 @default.
- W4285408072 cites W2039247168 @default.
- W4285408072 cites W2054440797 @default.
- W4285408072 cites W2087416986 @default.
- W4285408072 cites W2128254161 @default.
- W4285408072 cites W2171627515 @default.
- W4285408072 cites W2194775991 @default.
- W4285408072 cites W2194818953 @default.
- W4285408072 cites W2221899823 @default.
- W4285408072 cites W2293167795 @default.
- W4285408072 cites W2327302159 @default.
- W4285408072 cites W2548712274 @default.
- W4285408072 cites W2613155248 @default.
- W4285408072 cites W2619662254 @default.
- W4285408072 cites W2746434776 @default.
- W4285408072 cites W2770113520 @default.
- W4285408072 cites W2775207294 @default.
- W4285408072 cites W2783165089 @default.
- W4285408072 cites W2784344583 @default.
- W4285408072 cites W2792111852 @default.
- W4285408072 cites W2798559986 @default.
- W4285408072 cites W2804744787 @default.
- W4285408072 cites W2887513558 @default.
- W4285408072 cites W2892621946 @default.
- W4285408072 cites W2895176907 @default.
- W4285408072 cites W2901339722 @default.
- W4285408072 cites W2953478519 @default.
- W4285408072 cites W2963129413 @default.
- W4285408072 cites W2963213461 @default.
- W4285408072 cites W2963284277 @default.
- W4285408072 cites W2963446712 @default.
- W4285408072 cites W2963774720 @default.
- W4285408072 cites W2964013315 @default.
- W4285408072 cites W2964984565 @default.
- W4285408072 cites W2973242850 @default.
- W4285408072 cites W2984422960 @default.
- W4285408072 cites W2988699317 @default.
- W4285408072 cites W2989738275 @default.
- W4285408072 cites W2991494819 @default.
- W4285408072 cites W2998841120 @default.
- W4285408072 cites W2999000103 @default.
- W4285408072 cites W3000672846 @default.
- W4285408072 cites W3009110401 @default.
- W4285408072 cites W3016410830 @default.
- W4285408072 cites W3022346097 @default.
- W4285408072 cites W3023991509 @default.
- W4285408072 cites W3026889349 @default.
- W4285408072 cites W3033491711 @default.
- W4285408072 cites W3035426499 @default.
- W4285408072 cites W3038579873 @default.
- W4285408072 cites W3041293645 @default.
- W4285408072 cites W3048092834 @default.
- W4285408072 cites W3099844221 @default.
- W4285408072 cites W3104725225 @default.
- W4285408072 cites W3106821383 @default.
- W4285408072 cites W3120342934 @default.
- W4285408072 cites W3136138438 @default.
- W4285408072 cites W4210257598 @default.
- W4285408072 doi "https://doi.org/10.1109/mgrs.2021.3135954" @default.
- W4285408072 hasPublicationYear "2022" @default.
- W4285408072 type Work @default.
- W4285408072 citedByCount "10" @default.
- W4285408072 countsByYear W42854080722022 @default.
- W4285408072 countsByYear W42854080722023 @default.
- W4285408072 crossrefType "journal-article" @default.
- W4285408072 hasAuthorship W4285408072A5007897858 @default.
- W4285408072 hasAuthorship W4285408072A5036283525 @default.
- W4285408072 hasAuthorship W4285408072A5047576305 @default.
- W4285408072 hasAuthorship W4285408072A5064776886 @default.
- W4285408072 hasAuthorship W4285408072A5068252474 @default.
- W4285408072 hasAuthorship W4285408072A5085035578 @default.
- W4285408072 hasConcept C115961682 @default.
- W4285408072 hasConcept C119857082 @default.
- W4285408072 hasConcept C121332964 @default.
- W4285408072 hasConcept C124101348 @default.
- W4285408072 hasConcept C127413603 @default.
- W4285408072 hasConcept C131584629 @default.
- W4285408072 hasConcept C154945302 @default.
- W4285408072 hasConcept C158622935 @default.
- W4285408072 hasConcept C2780440489 @default.
- W4285408072 hasConcept C2781067378 @default.
- W4285408072 hasConcept C33954974 @default.