Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285429183> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4285429183 abstract "Machine learning is becoming a powerful tool to predict temperature-dependent yield strengths (YS) of structural materials, particularly for multi-principal-element systems. However, successful machine-learning predictions depend on the use of reasonable machine-learning models. Here, we present a comprehensive and up-to-date overview of a bilinear log model for predicting temperature-dependent YS of medium-entropy or high-entropy alloys (MEAs or HEAs). In this model, a break temperature, Tbreak, is introduced, which can guide the design of MEAs or HEAs with attractive high-temperature properties. Unlike assuming black-box structures, our model is based on the underlying physics, incorporated in form of a priori information. A technique of global optimization is employed to enable the concurrent optimization of model parameters over low- and high-temperature regimes, showing that the break temperature is consistent across YS and ultimate strength for a variety of HEA compositions. A high-level comparison between YS of MEAs/HEAs and those of nickel-based superalloys reveal superior strength properties of selected refractory HEAs. For reliable operations, the temperature of a structural component, such as a turbine blade, made from refractory alloys may need to stay below Tbreak. Once above Tbreak, phase transformations may start taking place, and the alloy may begin losing structural integrity." @default.
- W4285429183 created "2022-07-15" @default.
- W4285429183 creator A5007203359 @default.
- W4285429183 creator A5027297848 @default.
- W4285429183 creator A5039650364 @default.
- W4285429183 creator A5066161891 @default.
- W4285429183 date "2022-07-11" @default.
- W4285429183 modified "2023-10-16" @default.
- W4285429183 title "Physics-Based Machine-Learning Approach for Modeling the Temperature-Dependent Yield Strengths of Medium- or High-Entropy Alloys" @default.
- W4285429183 doi "https://doi.org/10.48550/arxiv.2207.05171" @default.
- W4285429183 hasPublicationYear "2022" @default.
- W4285429183 type Work @default.
- W4285429183 citedByCount "0" @default.
- W4285429183 crossrefType "posted-content" @default.
- W4285429183 hasAuthorship W4285429183A5007203359 @default.
- W4285429183 hasAuthorship W4285429183A5027297848 @default.
- W4285429183 hasAuthorship W4285429183A5039650364 @default.
- W4285429183 hasAuthorship W4285429183A5066161891 @default.
- W4285429183 hasBestOaLocation W42854291831 @default.
- W4285429183 hasConcept C106301342 @default.
- W4285429183 hasConcept C119857082 @default.
- W4285429183 hasConcept C121332964 @default.
- W4285429183 hasConcept C127413603 @default.
- W4285429183 hasConcept C134121241 @default.
- W4285429183 hasConcept C191897082 @default.
- W4285429183 hasConcept C192562407 @default.
- W4285429183 hasConcept C207055975 @default.
- W4285429183 hasConcept C2780026712 @default.
- W4285429183 hasConcept C2780299837 @default.
- W4285429183 hasConcept C41008148 @default.
- W4285429183 hasConcept C44280652 @default.
- W4285429183 hasConcept C62520636 @default.
- W4285429183 hasConcept C78519656 @default.
- W4285429183 hasConcept C85906118 @default.
- W4285429183 hasConcept C97355855 @default.
- W4285429183 hasConceptScore W4285429183C106301342 @default.
- W4285429183 hasConceptScore W4285429183C119857082 @default.
- W4285429183 hasConceptScore W4285429183C121332964 @default.
- W4285429183 hasConceptScore W4285429183C127413603 @default.
- W4285429183 hasConceptScore W4285429183C134121241 @default.
- W4285429183 hasConceptScore W4285429183C191897082 @default.
- W4285429183 hasConceptScore W4285429183C192562407 @default.
- W4285429183 hasConceptScore W4285429183C207055975 @default.
- W4285429183 hasConceptScore W4285429183C2780026712 @default.
- W4285429183 hasConceptScore W4285429183C2780299837 @default.
- W4285429183 hasConceptScore W4285429183C41008148 @default.
- W4285429183 hasConceptScore W4285429183C44280652 @default.
- W4285429183 hasConceptScore W4285429183C62520636 @default.
- W4285429183 hasConceptScore W4285429183C78519656 @default.
- W4285429183 hasConceptScore W4285429183C85906118 @default.
- W4285429183 hasConceptScore W4285429183C97355855 @default.
- W4285429183 hasLocation W42854291831 @default.
- W4285429183 hasOpenAccess W4285429183 @default.
- W4285429183 hasPrimaryLocation W42854291831 @default.
- W4285429183 hasRelatedWork W2047417662 @default.
- W4285429183 hasRelatedWork W2889076951 @default.
- W4285429183 hasRelatedWork W2913692490 @default.
- W4285429183 hasRelatedWork W2937668233 @default.
- W4285429183 hasRelatedWork W3024654828 @default.
- W4285429183 hasRelatedWork W4206348953 @default.
- W4285429183 hasRelatedWork W4283157230 @default.
- W4285429183 hasRelatedWork W4286617266 @default.
- W4285429183 hasRelatedWork W4295763135 @default.
- W4285429183 hasRelatedWork W4320016422 @default.
- W4285429183 isParatext "false" @default.
- W4285429183 isRetracted "false" @default.
- W4285429183 workType "article" @default.