Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285469407> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4285469407 endingPage "1571" @default.
- W4285469407 startingPage "1566" @default.
- W4285469407 abstract "The robust segmentation of color images in a natural environment without specific constraints such as lighting or background is very important in the field of image processing and computer vision. In this paper, an environmentally adaptive image segmentation method using color invariant is proposed. The proposed method introduces a number of color invariant, such as W, C, U, N, and H, and automatically detects factors in the surrounding environment in which images such as lighting, shading, and highlights are taken. The image is then effectively split based on the edge by selecting the color invariant optimal for the detected environmental factors. In the experiment, we implemented the proposed edge-based image segmentation algorithm. Various image data taken in general environments without specific constraints were utilized as input images of the suggested system. In this study, various kinds of color images taken in different environments were tested, and each color invariant was extracted from the experiments that best expressed the environmental changes around them. As a result, a largest number of images were determined to have a change in the intensity of lighting, followed by highlights and shadows. In addition, there were a few images that determined that no special state environmental changes existed. As the results of the experiment show visually, the existing method did not correctly remove shadows and did not detect some areas of the circular shape. In addition, the existing method can also be found to be partially inaccurate in edge detection in many areas. On the other hand, the proposed method confirmed stable segmentation of images. The proposed color invariant-based image segmentation algorithm is expected to be useful in various pattern recognition areas such as face tracking, mobile object detection, gesture recognition, motion understanding, etc." @default.
- W4285469407 created "2022-07-15" @default.
- W4285469407 creator A5037175500 @default.
- W4285469407 date "2021-05-01" @default.
- W4285469407 modified "2023-09-27" @default.
- W4285469407 title "Environmental Factor-Based Segmentation of Images in Natural Environments" @default.
- W4285469407 doi "https://doi.org/10.1166/jctn.2021.9583" @default.
- W4285469407 hasPublicationYear "2021" @default.
- W4285469407 type Work @default.
- W4285469407 citedByCount "0" @default.
- W4285469407 crossrefType "journal-article" @default.
- W4285469407 hasAuthorship W4285469407A5037175500 @default.
- W4285469407 hasConcept C115961682 @default.
- W4285469407 hasConcept C121684516 @default.
- W4285469407 hasConcept C124504099 @default.
- W4285469407 hasConcept C142616399 @default.
- W4285469407 hasConcept C153180895 @default.
- W4285469407 hasConcept C154945302 @default.
- W4285469407 hasConcept C177515723 @default.
- W4285469407 hasConcept C190470478 @default.
- W4285469407 hasConcept C206824153 @default.
- W4285469407 hasConcept C31972630 @default.
- W4285469407 hasConcept C33923547 @default.
- W4285469407 hasConcept C37914503 @default.
- W4285469407 hasConcept C41008148 @default.
- W4285469407 hasConcept C65885262 @default.
- W4285469407 hasConcept C89600930 @default.
- W4285469407 hasConcept C9417928 @default.
- W4285469407 hasConceptScore W4285469407C115961682 @default.
- W4285469407 hasConceptScore W4285469407C121684516 @default.
- W4285469407 hasConceptScore W4285469407C124504099 @default.
- W4285469407 hasConceptScore W4285469407C142616399 @default.
- W4285469407 hasConceptScore W4285469407C153180895 @default.
- W4285469407 hasConceptScore W4285469407C154945302 @default.
- W4285469407 hasConceptScore W4285469407C177515723 @default.
- W4285469407 hasConceptScore W4285469407C190470478 @default.
- W4285469407 hasConceptScore W4285469407C206824153 @default.
- W4285469407 hasConceptScore W4285469407C31972630 @default.
- W4285469407 hasConceptScore W4285469407C33923547 @default.
- W4285469407 hasConceptScore W4285469407C37914503 @default.
- W4285469407 hasConceptScore W4285469407C41008148 @default.
- W4285469407 hasConceptScore W4285469407C65885262 @default.
- W4285469407 hasConceptScore W4285469407C89600930 @default.
- W4285469407 hasConceptScore W4285469407C9417928 @default.
- W4285469407 hasIssue "5" @default.
- W4285469407 hasLocation W42854694071 @default.
- W4285469407 hasOpenAccess W4285469407 @default.
- W4285469407 hasPrimaryLocation W42854694071 @default.
- W4285469407 hasRelatedWork W1669643531 @default.
- W4285469407 hasRelatedWork W2059366434 @default.
- W4285469407 hasRelatedWork W2118331541 @default.
- W4285469407 hasRelatedWork W2122581818 @default.
- W4285469407 hasRelatedWork W2144253162 @default.
- W4285469407 hasRelatedWork W2159066190 @default.
- W4285469407 hasRelatedWork W2275519014 @default.
- W4285469407 hasRelatedWork W2368699561 @default.
- W4285469407 hasRelatedWork W2405402004 @default.
- W4285469407 hasRelatedWork W2476566122 @default.
- W4285469407 hasVolume "18" @default.
- W4285469407 isParatext "false" @default.
- W4285469407 isRetracted "false" @default.
- W4285469407 workType "article" @default.