Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285490634> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4285490634 abstract "Abstract Preoperative prediction of cervical lymph node metastasis in papillary thyroid carcinoma provided a basis for tumor staging and treatment decision. This study aimed to investigate the utility of machine learning and develop different models to preoperative predict cervical lymph node metastasis based on ultrasonic radiomic features and clinical characteristics in papillary thyroid carcinoma nodules. Data from 400 papillary thyroid carcinoma nodules were included and divided into training and validation group. With help of machine learning, clinical characteristics and ultrasonic radiomic features were extracted and selected using randomforest and least absolute shrinkage and selection operator regression before classified by 5 classifiers. Finally, 10 models were built and their area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, positive predictive value and negative predictive value were measured. Among the 10 models, RF-RF model revealed the highest area under curve (0.812) and accuracy (0.7542) in validation group. The top 10 variables of it included age, 7 textural features, 1 shape feature and 1 first-order feature, in which 8 were high-dimensional features. Thus, RF-RF model showed the best predictive performance for cervical lymph node metastasis. And the importance features selected by it highlighted the unique role of higher-dimensional statistical methods for radiomics analysis." @default.
- W4285490634 created "2022-07-15" @default.
- W4285490634 creator A5000808913 @default.
- W4285490634 creator A5003866201 @default.
- W4285490634 creator A5026906686 @default.
- W4285490634 creator A5035976373 @default.
- W4285490634 creator A5039489327 @default.
- W4285490634 creator A5039656889 @default.
- W4285490634 creator A5054252220 @default.
- W4285490634 creator A5085162610 @default.
- W4285490634 date "2022-07-15" @default.
- W4285490634 modified "2023-10-17" @default.
- W4285490634 title "Machine learning approach to identify cervical lymph node metastasis based on ultrasonic radiomic features and clinical characteristics in papillary thyroid carcinoma" @default.
- W4285490634 doi "https://doi.org/10.21203/rs.3.rs-1827557/v1" @default.
- W4285490634 hasPublicationYear "2022" @default.
- W4285490634 type Work @default.
- W4285490634 citedByCount "0" @default.
- W4285490634 crossrefType "posted-content" @default.
- W4285490634 hasAuthorship W4285490634A5000808913 @default.
- W4285490634 hasAuthorship W4285490634A5003866201 @default.
- W4285490634 hasAuthorship W4285490634A5026906686 @default.
- W4285490634 hasAuthorship W4285490634A5035976373 @default.
- W4285490634 hasAuthorship W4285490634A5039489327 @default.
- W4285490634 hasAuthorship W4285490634A5039656889 @default.
- W4285490634 hasAuthorship W4285490634A5054252220 @default.
- W4285490634 hasAuthorship W4285490634A5085162610 @default.
- W4285490634 hasBestOaLocation W42854906341 @default.
- W4285490634 hasConcept C121608353 @default.
- W4285490634 hasConcept C126322002 @default.
- W4285490634 hasConcept C126838900 @default.
- W4285490634 hasConcept C138885662 @default.
- W4285490634 hasConcept C142724271 @default.
- W4285490634 hasConcept C154945302 @default.
- W4285490634 hasConcept C2776401178 @default.
- W4285490634 hasConcept C2777546739 @default.
- W4285490634 hasConcept C2778549279 @default.
- W4285490634 hasConcept C2779013556 @default.
- W4285490634 hasConcept C2779022025 @default.
- W4285490634 hasConcept C2780849966 @default.
- W4285490634 hasConcept C2992571226 @default.
- W4285490634 hasConcept C2993294228 @default.
- W4285490634 hasConcept C41008148 @default.
- W4285490634 hasConcept C41895202 @default.
- W4285490634 hasConcept C526584372 @default.
- W4285490634 hasConcept C58471807 @default.
- W4285490634 hasConcept C71924100 @default.
- W4285490634 hasConceptScore W4285490634C121608353 @default.
- W4285490634 hasConceptScore W4285490634C126322002 @default.
- W4285490634 hasConceptScore W4285490634C126838900 @default.
- W4285490634 hasConceptScore W4285490634C138885662 @default.
- W4285490634 hasConceptScore W4285490634C142724271 @default.
- W4285490634 hasConceptScore W4285490634C154945302 @default.
- W4285490634 hasConceptScore W4285490634C2776401178 @default.
- W4285490634 hasConceptScore W4285490634C2777546739 @default.
- W4285490634 hasConceptScore W4285490634C2778549279 @default.
- W4285490634 hasConceptScore W4285490634C2779013556 @default.
- W4285490634 hasConceptScore W4285490634C2779022025 @default.
- W4285490634 hasConceptScore W4285490634C2780849966 @default.
- W4285490634 hasConceptScore W4285490634C2992571226 @default.
- W4285490634 hasConceptScore W4285490634C2993294228 @default.
- W4285490634 hasConceptScore W4285490634C41008148 @default.
- W4285490634 hasConceptScore W4285490634C41895202 @default.
- W4285490634 hasConceptScore W4285490634C526584372 @default.
- W4285490634 hasConceptScore W4285490634C58471807 @default.
- W4285490634 hasConceptScore W4285490634C71924100 @default.
- W4285490634 hasLocation W42854906341 @default.
- W4285490634 hasOpenAccess W4285490634 @default.
- W4285490634 hasPrimaryLocation W42854906341 @default.
- W4285490634 hasRelatedWork W2317344515 @default.
- W4285490634 hasRelatedWork W2334900425 @default.
- W4285490634 hasRelatedWork W2365577283 @default.
- W4285490634 hasRelatedWork W2377089907 @default.
- W4285490634 hasRelatedWork W2387481863 @default.
- W4285490634 hasRelatedWork W2970248038 @default.
- W4285490634 hasRelatedWork W2994746018 @default.
- W4285490634 hasRelatedWork W4249599933 @default.
- W4285490634 hasRelatedWork W4282984328 @default.
- W4285490634 hasRelatedWork W4285490634 @default.
- W4285490634 isParatext "false" @default.
- W4285490634 isRetracted "false" @default.
- W4285490634 workType "article" @default.