Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285491373> ?p ?o ?g. }
- W4285491373 endingPage "e1010328" @default.
- W4285491373 startingPage "e1010328" @default.
- W4285491373 abstract "Building an accurate disease risk prediction model is an essential step in the modern quest for precision medicine. While high-dimensional genomic data provides valuable data resources for the investigations of disease risk, their huge amount of noise and complex relationships between predictors and outcomes have brought tremendous analytical challenges. Deep learning model is the state-of-the-art methods for many prediction tasks, and it is a promising framework for the analysis of genomic data. However, deep learning models generally suffer from the curse of dimensionality and the lack of biological interpretability, both of which have greatly limited their applications. In this work, we have developed a deep neural network (DNN) based prediction modeling framework. We first proposed a group-wise feature importance score for feature selection, where genes harboring genetic variants with both linear and non-linear effects are efficiently detected. We then designed an explainable transfer-learning based DNN method, which can directly incorporate information from feature selection and accurately capture complex predictive effects. The proposed DNN-framework is biologically interpretable, as it is built based on the selected predictive genes. It is also computationally efficient and can be applied to genome-wide data. Through extensive simulations and real data analyses, we have demonstrated that our proposed method can not only efficiently detect predictive features, but also accurately predict disease risk, as compared to many existing methods." @default.
- W4285491373 created "2022-07-15" @default.
- W4285491373 creator A5013161871 @default.
- W4285491373 creator A5020605724 @default.
- W4285491373 creator A5049071856 @default.
- W4285491373 creator A5052467887 @default.
- W4285491373 creator A5061708105 @default.
- W4285491373 creator A5085071632 @default.
- W4285491373 date "2022-07-15" @default.
- W4285491373 modified "2023-10-16" @default.
- W4285491373 title "Explainable deep transfer learning model for disease risk prediction using high-dimensional genomic data" @default.
- W4285491373 cites W1986531971 @default.
- W4285491373 cites W2003917512 @default.
- W4285491373 cites W2008569137 @default.
- W4285491373 cites W2011199056 @default.
- W4285491373 cites W2020427316 @default.
- W4285491373 cites W2034551256 @default.
- W4285491373 cites W2037169299 @default.
- W4285491373 cites W2049733019 @default.
- W4285491373 cites W2074750860 @default.
- W4285491373 cites W2098597355 @default.
- W4285491373 cites W2100909778 @default.
- W4285491373 cites W2107199945 @default.
- W4285491373 cites W2121514893 @default.
- W4285491373 cites W2135615076 @default.
- W4285491373 cites W2148985208 @default.
- W4285491373 cites W2154560360 @default.
- W4285491373 cites W2155496693 @default.
- W4285491373 cites W2168873176 @default.
- W4285491373 cites W2323906844 @default.
- W4285491373 cites W2424097553 @default.
- W4285491373 cites W2439833924 @default.
- W4285491373 cites W2605432898 @default.
- W4285491373 cites W2613151407 @default.
- W4285491373 cites W2626091722 @default.
- W4285491373 cites W2754019789 @default.
- W4285491373 cites W2807173264 @default.
- W4285491373 cites W2896680845 @default.
- W4285491373 cites W2901218091 @default.
- W4285491373 cites W2901837190 @default.
- W4285491373 cites W2935703330 @default.
- W4285491373 cites W2950565052 @default.
- W4285491373 cites W2951393041 @default.
- W4285491373 cites W2954968328 @default.
- W4285491373 cites W2962931338 @default.
- W4285491373 cites W2963371845 @default.
- W4285491373 cites W3003386118 @default.
- W4285491373 cites W3007107031 @default.
- W4285491373 cites W3012092070 @default.
- W4285491373 cites W3020100939 @default.
- W4285491373 cites W3043129934 @default.
- W4285491373 cites W3087389192 @default.
- W4285491373 cites W3102479286 @default.
- W4285491373 cites W3110912495 @default.
- W4285491373 cites W3111018742 @default.
- W4285491373 cites W3114477564 @default.
- W4285491373 cites W3130801808 @default.
- W4285491373 cites W3188398957 @default.
- W4285491373 doi "https://doi.org/10.1371/journal.pcbi.1010328" @default.
- W4285491373 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35839250" @default.
- W4285491373 hasPublicationYear "2022" @default.
- W4285491373 type Work @default.
- W4285491373 citedByCount "3" @default.
- W4285491373 countsByYear W42854913732023 @default.
- W4285491373 crossrefType "journal-article" @default.
- W4285491373 hasAuthorship W4285491373A5013161871 @default.
- W4285491373 hasAuthorship W4285491373A5020605724 @default.
- W4285491373 hasAuthorship W4285491373A5049071856 @default.
- W4285491373 hasAuthorship W4285491373A5052467887 @default.
- W4285491373 hasAuthorship W4285491373A5061708105 @default.
- W4285491373 hasAuthorship W4285491373A5085071632 @default.
- W4285491373 hasBestOaLocation W42854913731 @default.
- W4285491373 hasConcept C108583219 @default.
- W4285491373 hasConcept C111030470 @default.
- W4285491373 hasConcept C119857082 @default.
- W4285491373 hasConcept C124101348 @default.
- W4285491373 hasConcept C138885662 @default.
- W4285491373 hasConcept C148483581 @default.
- W4285491373 hasConcept C150899416 @default.
- W4285491373 hasConcept C154945302 @default.
- W4285491373 hasConcept C2776401178 @default.
- W4285491373 hasConcept C2781067378 @default.
- W4285491373 hasConcept C41008148 @default.
- W4285491373 hasConcept C41895202 @default.
- W4285491373 hasConcept C45804977 @default.
- W4285491373 hasConcept C50644808 @default.
- W4285491373 hasConcept C70518039 @default.
- W4285491373 hasConcept C81917197 @default.
- W4285491373 hasConceptScore W4285491373C108583219 @default.
- W4285491373 hasConceptScore W4285491373C111030470 @default.
- W4285491373 hasConceptScore W4285491373C119857082 @default.
- W4285491373 hasConceptScore W4285491373C124101348 @default.
- W4285491373 hasConceptScore W4285491373C138885662 @default.
- W4285491373 hasConceptScore W4285491373C148483581 @default.
- W4285491373 hasConceptScore W4285491373C150899416 @default.
- W4285491373 hasConceptScore W4285491373C154945302 @default.
- W4285491373 hasConceptScore W4285491373C2776401178 @default.
- W4285491373 hasConceptScore W4285491373C2781067378 @default.