Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285492050> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4285492050 endingPage "136" @default.
- W4285492050 startingPage "107" @default.
- W4285492050 abstract "Fine resolution spatial digital maps of soil macronutrients, which are an important factor in plant nutrition, are needed to support agricultural productivity. Digital soil maps obtained with high precision and accuracy are at the forefront of innovative technological initiatives to increase agricultural production. We had 91 topsoil observations, indices produced from satellite imagery, topographical variables produced from the DEM, and the CORINE land cover classes map which showed the effectiveness of agricultural activities for many years. Our first ultimate goal was to create digital soil maps with a spatial resolution of 30 m of various soil macronutrients (P, Ca, Mg, K). We compared three machine learning algorithms: multiple linear regression, support vector machine, and random forest algorithms. Our results showed that random forest and support vector machine algorithms achieved relatively high accuracy in predicting spatial distributions of soil properties affected by human activities. CORINE land cover classes map was identified as an important environmental variable in models for the production of phosphorus map, especially. Framework of soil science and sufficiency class values of nutrients can be created in a raster environment by using raster calculation tools of geographic information systems and it will allow a more effective use of maps." @default.
- W4285492050 created "2022-07-15" @default.
- W4285492050 creator A5004345367 @default.
- W4285492050 creator A5073268640 @default.
- W4285492050 date "2022-07-15" @default.
- W4285492050 modified "2023-10-16" @default.
- W4285492050 title "Using Machine Learning Algorithms to Mapping of the Soil Macronutrient Elements Variability with Digital Environmental Data in an Alluvial Plain" @default.
- W4285492050 doi "https://doi.org/10.1201/9781003311782-6" @default.
- W4285492050 hasPublicationYear "2022" @default.
- W4285492050 type Work @default.
- W4285492050 citedByCount "4" @default.
- W4285492050 countsByYear W42854920502022 @default.
- W4285492050 countsByYear W42854920502023 @default.
- W4285492050 crossrefType "book-chapter" @default.
- W4285492050 hasAuthorship W4285492050A5004345367 @default.
- W4285492050 hasAuthorship W4285492050A5073268640 @default.
- W4285492050 hasConcept C104471815 @default.
- W4285492050 hasConcept C11413529 @default.
- W4285492050 hasConcept C114793014 @default.
- W4285492050 hasConcept C127313418 @default.
- W4285492050 hasConcept C151730666 @default.
- W4285492050 hasConcept C159390177 @default.
- W4285492050 hasConcept C159750122 @default.
- W4285492050 hasConcept C41008148 @default.
- W4285492050 hasConcept C47568318 @default.
- W4285492050 hasConcept C69823785 @default.
- W4285492050 hasConcept C71864017 @default.
- W4285492050 hasConceptScore W4285492050C104471815 @default.
- W4285492050 hasConceptScore W4285492050C11413529 @default.
- W4285492050 hasConceptScore W4285492050C114793014 @default.
- W4285492050 hasConceptScore W4285492050C127313418 @default.
- W4285492050 hasConceptScore W4285492050C151730666 @default.
- W4285492050 hasConceptScore W4285492050C159390177 @default.
- W4285492050 hasConceptScore W4285492050C159750122 @default.
- W4285492050 hasConceptScore W4285492050C41008148 @default.
- W4285492050 hasConceptScore W4285492050C47568318 @default.
- W4285492050 hasConceptScore W4285492050C69823785 @default.
- W4285492050 hasConceptScore W4285492050C71864017 @default.
- W4285492050 hasLocation W42854920501 @default.
- W4285492050 hasOpenAccess W4285492050 @default.
- W4285492050 hasPrimaryLocation W42854920501 @default.
- W4285492050 hasRelatedWork W1975105480 @default.
- W4285492050 hasRelatedWork W1983764767 @default.
- W4285492050 hasRelatedWork W2008936539 @default.
- W4285492050 hasRelatedWork W2053607159 @default.
- W4285492050 hasRelatedWork W2066344310 @default.
- W4285492050 hasRelatedWork W2092981890 @default.
- W4285492050 hasRelatedWork W2115848567 @default.
- W4285492050 hasRelatedWork W2236060121 @default.
- W4285492050 hasRelatedWork W2314894875 @default.
- W4285492050 hasRelatedWork W2315454333 @default.
- W4285492050 isParatext "false" @default.
- W4285492050 isRetracted "false" @default.
- W4285492050 workType "book-chapter" @default.