Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285492706> ?p ?o ?g. }
- W4285492706 endingPage "e1009715" @default.
- W4285492706 startingPage "e1009715" @default.
- W4285492706 abstract "Bispecific T cell engagers (TCEs) are an emerging anti-cancer modality that redirects cytotoxic T cells to tumor cells expressing tumor-associated antigens (TAAs), thereby forming immune synapses to exert anti-tumor effects. Designing pharmacokinetically acceptable TCEs and optimizing their size presents a considerable protein engineering challenge, particularly given the complexity of intercellular bridging between T cells and tumor cells. Therefore, a physiologically-relevant and clinically-verified computational modeling framework is of crucial importance to understand the protein engineering trade-offs. In this study, we developed a quantitative, physiologically-based computational framework to predict immune synapse formation for a variety of molecular formats of TCEs in tumor tissues. Our model incorporates a molecular size-dependent biodistribution using the two-pore theory, extravasation of T cells and hematologic cancer cells, mechanistic bispecific intercellular binding of TCEs, and competitive inhibitory interactions by shed targets. The biodistribution of TCEs was verified by positron emission tomography imaging of [ 89 Zr]AMG211 (a carcinoembryonic antigen-targeting TCE) in patients. Parameter sensitivity analyses indicated that immune synapse formation was highly sensitive to TAA expression, degree of target shedding, and binding selectivity to tumor cell surface TAAs over shed targets. Notably, the model suggested a “sweet spot” for TCEs’ CD3 binding affinity, which balanced the trapping of TCEs in T-cell-rich organs. The final model simulations indicated that the number of immune synapses is similar (~55/tumor cell) between two distinct clinical stage B cell maturation antigen (BCMA)-targeting TCEs, PF-06863135 in an IgG format and AMG420 in a BiTE format, at their respective efficacious doses in multiple myeloma patients. This result demonstrates the applicability of the developed computational modeling framework to molecular design optimization and clinical benchmarking for TCEs, thus suggesting that this framework can be applied to other targets to provide a quantitative means to facilitate model-informed best-in-class TCE discovery and development." @default.
- W4285492706 created "2022-07-15" @default.
- W4285492706 creator A5009483099 @default.
- W4285492706 creator A5040652209 @default.
- W4285492706 creator A5041533546 @default.
- W4285492706 creator A5054505331 @default.
- W4285492706 creator A5062632577 @default.
- W4285492706 date "2022-07-15" @default.
- W4285492706 modified "2023-10-05" @default.
- W4285492706 title "Leveraging a physiologically-based quantitative translational modeling platform for designing B cell maturation antigen-targeting bispecific T cell engagers for treatment of multiple myeloma" @default.
- W4285492706 cites W1547679482 @default.
- W4285492706 cites W1968855481 @default.
- W4285492706 cites W1979264461 @default.
- W4285492706 cites W1997750006 @default.
- W4285492706 cites W2002765161 @default.
- W4285492706 cites W2012886953 @default.
- W4285492706 cites W2024890197 @default.
- W4285492706 cites W2040316076 @default.
- W4285492706 cites W2048048095 @default.
- W4285492706 cites W2054939724 @default.
- W4285492706 cites W2056439160 @default.
- W4285492706 cites W2083635708 @default.
- W4285492706 cites W2088438813 @default.
- W4285492706 cites W2114152260 @default.
- W4285492706 cites W2120372571 @default.
- W4285492706 cites W2147157147 @default.
- W4285492706 cites W2364084743 @default.
- W4285492706 cites W2403074774 @default.
- W4285492706 cites W2494461917 @default.
- W4285492706 cites W2561836860 @default.
- W4285492706 cites W2562243521 @default.
- W4285492706 cites W2563353508 @default.
- W4285492706 cites W2594152227 @default.
- W4285492706 cites W2594388103 @default.
- W4285492706 cites W2602965251 @default.
- W4285492706 cites W2726673871 @default.
- W4285492706 cites W2735108279 @default.
- W4285492706 cites W2783911823 @default.
- W4285492706 cites W2784605149 @default.
- W4285492706 cites W2790173378 @default.
- W4285492706 cites W2790286570 @default.
- W4285492706 cites W2792588868 @default.
- W4285492706 cites W2799553179 @default.
- W4285492706 cites W2818868381 @default.
- W4285492706 cites W2888038493 @default.
- W4285492706 cites W2899237873 @default.
- W4285492706 cites W2910114383 @default.
- W4285492706 cites W2913927155 @default.
- W4285492706 cites W2917623999 @default.
- W4285492706 cites W2940535063 @default.
- W4285492706 cites W2940554426 @default.
- W4285492706 cites W2946458441 @default.
- W4285492706 cites W2965777738 @default.
- W4285492706 cites W2969569086 @default.
- W4285492706 cites W2997301227 @default.
- W4285492706 cites W3005376643 @default.
- W4285492706 cites W3014980845 @default.
- W4285492706 cites W3017098331 @default.
- W4285492706 cites W3035623569 @default.
- W4285492706 cites W3082239795 @default.
- W4285492706 cites W3096609892 @default.
- W4285492706 cites W3108312356 @default.
- W4285492706 doi "https://doi.org/10.1371/journal.pcbi.1009715" @default.
- W4285492706 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35839267" @default.
- W4285492706 hasPublicationYear "2022" @default.
- W4285492706 type Work @default.
- W4285492706 citedByCount "3" @default.
- W4285492706 countsByYear W42854927062023 @default.
- W4285492706 crossrefType "journal-article" @default.
- W4285492706 hasAuthorship W4285492706A5009483099 @default.
- W4285492706 hasAuthorship W4285492706A5040652209 @default.
- W4285492706 hasAuthorship W4285492706A5041533546 @default.
- W4285492706 hasAuthorship W4285492706A5054505331 @default.
- W4285492706 hasAuthorship W4285492706A5062632577 @default.
- W4285492706 hasBestOaLocation W42854927061 @default.
- W4285492706 hasConcept C147483822 @default.
- W4285492706 hasConcept C19317047 @default.
- W4285492706 hasConcept C202751555 @default.
- W4285492706 hasConcept C203014093 @default.
- W4285492706 hasConcept C2776090121 @default.
- W4285492706 hasConcept C2776662205 @default.
- W4285492706 hasConcept C2777701055 @default.
- W4285492706 hasConcept C2777807558 @default.
- W4285492706 hasConcept C502942594 @default.
- W4285492706 hasConcept C55493867 @default.
- W4285492706 hasConcept C70721500 @default.
- W4285492706 hasConcept C86803240 @default.
- W4285492706 hasConcept C8891405 @default.
- W4285492706 hasConcept C9756297 @default.
- W4285492706 hasConceptScore W4285492706C147483822 @default.
- W4285492706 hasConceptScore W4285492706C19317047 @default.
- W4285492706 hasConceptScore W4285492706C202751555 @default.
- W4285492706 hasConceptScore W4285492706C203014093 @default.
- W4285492706 hasConceptScore W4285492706C2776090121 @default.
- W4285492706 hasConceptScore W4285492706C2776662205 @default.
- W4285492706 hasConceptScore W4285492706C2777701055 @default.
- W4285492706 hasConceptScore W4285492706C2777807558 @default.
- W4285492706 hasConceptScore W4285492706C502942594 @default.