Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285495910> ?p ?o ?g. }
- W4285495910 endingPage "19" @default.
- W4285495910 startingPage "1" @default.
- W4285495910 abstract "In a conventional art course, it is important for a teacher to provide feedback and guidance to individual students based on their learning status. However, it is challenging for teachers to provide immediate feedback to students without any aid. The advancement of artificial intelligence (AI) has provided a possible solution to cope with this problem. In this study, a deep learning-based art learning system (DL-ALS) was developed by employing a fine-tuned ResNet50 model for helping students identify and classify artworks. We aimed at cultivating students’ accurate appreciation knowledge and artwork creation competence, as well as providing instant feedback and personalized guidance with the help of AI technology. To explore the effects of this system, a quasi-experiment was implemented in an artwork appreciation course at a university. A total of 46 university students from two classes who took the elective art course were recruited in the study. One class was the experimental group adopting DL-ALS learning, while the other was the control group adopting conventional technology-supported art learning (CT-AL). The results showed that in comparison with CT-AL, learning through the DL-ALS could facilitate students’ learning achievement, technology acceptance, learning attitude, learning motivation, self-efficacy, satisfaction, and performance in the art course." @default.
- W4285495910 created "2022-07-15" @default.
- W4285495910 creator A5013693142 @default.
- W4285495910 creator A5035637609 @default.
- W4285495910 creator A5049547394 @default.
- W4285495910 creator A5055434640 @default.
- W4285495910 date "2022-07-13" @default.
- W4285495910 modified "2023-10-16" @default.
- W4285495910 title "Artificial intelligence-supported art education: a deep learning-based system for promoting university students’ artwork appreciation and painting outcomes" @default.
- W4285495910 cites W197269545 @default.
- W4285495910 cites W1986813079 @default.
- W4285495910 cites W1990044698 @default.
- W4285495910 cites W2029191123 @default.
- W4285495910 cites W2039955996 @default.
- W4285495910 cites W2049751944 @default.
- W4285495910 cites W2053885544 @default.
- W4285495910 cites W2068690371 @default.
- W4285495910 cites W2073995787 @default.
- W4285495910 cites W2087359160 @default.
- W4285495910 cites W2097117768 @default.
- W4285495910 cites W2112796928 @default.
- W4285495910 cites W2115260193 @default.
- W4285495910 cites W2126180793 @default.
- W4285495910 cites W2126523750 @default.
- W4285495910 cites W2173798076 @default.
- W4285495910 cites W2194775991 @default.
- W4285495910 cites W2395579298 @default.
- W4285495910 cites W2509155366 @default.
- W4285495910 cites W2694039884 @default.
- W4285495910 cites W2751647243 @default.
- W4285495910 cites W2770717476 @default.
- W4285495910 cites W2793042346 @default.
- W4285495910 cites W2794895159 @default.
- W4285495910 cites W2809252195 @default.
- W4285495910 cites W2884238566 @default.
- W4285495910 cites W2886511220 @default.
- W4285495910 cites W2891635869 @default.
- W4285495910 cites W2897620540 @default.
- W4285495910 cites W2898069657 @default.
- W4285495910 cites W2912185124 @default.
- W4285495910 cites W2919115771 @default.
- W4285495910 cites W2940525720 @default.
- W4285495910 cites W2951507486 @default.
- W4285495910 cites W2952079900 @default.
- W4285495910 cites W2955512305 @default.
- W4285495910 cites W2959938226 @default.
- W4285495910 cites W2962883796 @default.
- W4285495910 cites W2963020121 @default.
- W4285495910 cites W2966650813 @default.
- W4285495910 cites W2971058209 @default.
- W4285495910 cites W2985398062 @default.
- W4285495910 cites W2990900582 @default.
- W4285495910 cites W3006425969 @default.
- W4285495910 cites W3006937233 @default.
- W4285495910 cites W3012289806 @default.
- W4285495910 cites W3012303644 @default.
- W4285495910 cites W3020875770 @default.
- W4285495910 cites W3021868368 @default.
- W4285495910 cites W3024471355 @default.
- W4285495910 cites W3033556225 @default.
- W4285495910 cites W3042197823 @default.
- W4285495910 cites W3045641609 @default.
- W4285495910 cites W3081271469 @default.
- W4285495910 cites W3083080496 @default.
- W4285495910 cites W3084021717 @default.
- W4285495910 cites W3084223432 @default.
- W4285495910 cites W3084318463 @default.
- W4285495910 cites W3088540396 @default.
- W4285495910 cites W3089168916 @default.
- W4285495910 cites W3091693648 @default.
- W4285495910 cites W3093539623 @default.
- W4285495910 cites W3111901027 @default.
- W4285495910 cites W3129469040 @default.
- W4285495910 cites W3130257449 @default.
- W4285495910 cites W3137265661 @default.
- W4285495910 cites W3139670053 @default.
- W4285495910 cites W3158225068 @default.
- W4285495910 cites W3160941578 @default.
- W4285495910 cites W3173084393 @default.
- W4285495910 cites W3175625159 @default.
- W4285495910 cites W3181200090 @default.
- W4285495910 cites W4250727746 @default.
- W4285495910 doi "https://doi.org/10.1080/10494820.2022.2100426" @default.
- W4285495910 hasPublicationYear "2022" @default.
- W4285495910 type Work @default.
- W4285495910 citedByCount "3" @default.
- W4285495910 countsByYear W42854959102022 @default.
- W4285495910 countsByYear W42854959102023 @default.
- W4285495910 crossrefType "journal-article" @default.
- W4285495910 hasAuthorship W4285495910A5013693142 @default.
- W4285495910 hasAuthorship W4285495910A5035637609 @default.
- W4285495910 hasAuthorship W4285495910A5049547394 @default.
- W4285495910 hasAuthorship W4285495910A5055434640 @default.
- W4285495910 hasConcept C100521375 @default.
- W4285495910 hasConcept C142362112 @default.
- W4285495910 hasConcept C145420912 @default.
- W4285495910 hasConcept C153349607 @default.
- W4285495910 hasConcept C154945302 @default.