Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285496172> ?p ?o ?g. }
- W4285496172 endingPage "4050" @default.
- W4285496172 startingPage "4050" @default.
- W4285496172 abstract "Background: Decompression of the lumbar spine is one of the most common procedures performed in spine surgery. Hospital length of stay (LOS) is a clinically relevant metric used to assess surgical success, patient outcomes, and socioeconomic impact. This study aimed to investigate a variety of machine learning and deep learning algorithms to reliably predict whether a patient undergoing decompression of lumbar spinal stenosis will experience a prolonged LOS. Methods: Patients undergoing treatment for lumbar spinal stenosis with microsurgical and full-endoscopic decompression were selected within this retrospective monocentric cohort study. Prolonged LOS was defined as an LOS greater than or equal to the 75th percentile of the cohort (normal versus prolonged stay; binary classification task). Unsupervised learning with K-means clustering was used to find clusters in the data. Hospital stay classes were predicted with logistic regression, RandomForest classifier, stochastic gradient descent (SGD) classifier, K-nearest neighbors, Decision Tree classifier, Gaussian Naive Bayes (GaussianNB), support vector machines (SVM), a custom-made convolutional neural network (CNN), multilayer perceptron artificial neural network (MLP), and radial basis function neural network (RBNN) in Python. Prediction accuracy and area under the curve (AUC) were calculated. Feature importance analysis was utilized to find the most important predictors. Further, we developed a decision tree based on the Chi-square automatic interaction detection (CHAID) algorithm to investigate cut-offs of predictors for clinical decision-making. Results: 236 patients and 14 feature variables were included. K-means clustering separated data into two clusters distinguishing the data into two patient risk characteristic groups. The algorithms reached AUCs between 67.5% and 87.3% for the classification of LOS classes. Feature importance analysis of deep learning algorithms indicated that operation time was the most important feature in predicting LOS. A decision tree based on CHAID could predict 84.7% of the cases. Conclusions: Machine learning and deep learning algorithms can predict whether patients will experience an increased LOS following lumbar decompression surgery. Therefore, medical resources can be more appropriately allocated to patients who are at risk of prolonged LOS." @default.
- W4285496172 created "2022-07-15" @default.
- W4285496172 creator A5001972907 @default.
- W4285496172 creator A5028497357 @default.
- W4285496172 creator A5044949872 @default.
- W4285496172 creator A5054453691 @default.
- W4285496172 creator A5080530413 @default.
- W4285496172 creator A5084739998 @default.
- W4285496172 date "2022-07-13" @default.
- W4285496172 modified "2023-10-16" @default.
- W4285496172 title "Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery" @default.
- W4285496172 cites W1557737387 @default.
- W4285496172 cites W1965408784 @default.
- W4285496172 cites W1973981803 @default.
- W4285496172 cites W1985011397 @default.
- W4285496172 cites W1993451131 @default.
- W4285496172 cites W1999069128 @default.
- W4285496172 cites W2006009420 @default.
- W4285496172 cites W2006982272 @default.
- W4285496172 cites W2011092724 @default.
- W4285496172 cites W2016107778 @default.
- W4285496172 cites W2016941404 @default.
- W4285496172 cites W2024886564 @default.
- W4285496172 cites W2027675028 @default.
- W4285496172 cites W2031707040 @default.
- W4285496172 cites W2038133684 @default.
- W4285496172 cites W2038172375 @default.
- W4285496172 cites W2045576346 @default.
- W4285496172 cites W2047928166 @default.
- W4285496172 cites W2049513921 @default.
- W4285496172 cites W2051302848 @default.
- W4285496172 cites W2053563436 @default.
- W4285496172 cites W2059120492 @default.
- W4285496172 cites W2061414577 @default.
- W4285496172 cites W2070029482 @default.
- W4285496172 cites W2117092285 @default.
- W4285496172 cites W2125208830 @default.
- W4285496172 cites W2128722360 @default.
- W4285496172 cites W2128997253 @default.
- W4285496172 cites W2141702038 @default.
- W4285496172 cites W2150621731 @default.
- W4285496172 cites W2157244868 @default.
- W4285496172 cites W2165014123 @default.
- W4285496172 cites W2167810128 @default.
- W4285496172 cites W2168711381 @default.
- W4285496172 cites W2215609377 @default.
- W4285496172 cites W2317078097 @default.
- W4285496172 cites W2317397477 @default.
- W4285496172 cites W2408098338 @default.
- W4285496172 cites W2408724310 @default.
- W4285496172 cites W2605892817 @default.
- W4285496172 cites W2607436151 @default.
- W4285496172 cites W2619661111 @default.
- W4285496172 cites W2775102220 @default.
- W4285496172 cites W2889913746 @default.
- W4285496172 cites W2891518865 @default.
- W4285496172 cites W2897950569 @default.
- W4285496172 cites W2900599430 @default.
- W4285496172 cites W2905460953 @default.
- W4285496172 cites W2943268500 @default.
- W4285496172 cites W2946464972 @default.
- W4285496172 cites W2950935478 @default.
- W4285496172 cites W2970974838 @default.
- W4285496172 cites W2982461631 @default.
- W4285496172 cites W2986621096 @default.
- W4285496172 cites W2993439864 @default.
- W4285496172 cites W4224323344 @default.
- W4285496172 cites W4224992827 @default.
- W4285496172 cites W4232045253 @default.
- W4285496172 doi "https://doi.org/10.3390/jcm11144050" @default.
- W4285496172 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35887814" @default.
- W4285496172 hasPublicationYear "2022" @default.
- W4285496172 type Work @default.
- W4285496172 citedByCount "11" @default.
- W4285496172 countsByYear W42854961722022 @default.
- W4285496172 countsByYear W42854961722023 @default.
- W4285496172 crossrefType "journal-article" @default.
- W4285496172 hasAuthorship W4285496172A5001972907 @default.
- W4285496172 hasAuthorship W4285496172A5028497357 @default.
- W4285496172 hasAuthorship W4285496172A5044949872 @default.
- W4285496172 hasAuthorship W4285496172A5054453691 @default.
- W4285496172 hasAuthorship W4285496172A5080530413 @default.
- W4285496172 hasAuthorship W4285496172A5084739998 @default.
- W4285496172 hasBestOaLocation W42854961721 @default.
- W4285496172 hasConcept C11413529 @default.
- W4285496172 hasConcept C119857082 @default.
- W4285496172 hasConcept C12267149 @default.
- W4285496172 hasConcept C126322002 @default.
- W4285496172 hasConcept C141071460 @default.
- W4285496172 hasConcept C151956035 @default.
- W4285496172 hasConcept C154945302 @default.
- W4285496172 hasConcept C169258074 @default.
- W4285496172 hasConcept C2779631646 @default.
- W4285496172 hasConcept C41008148 @default.
- W4285496172 hasConcept C44575665 @default.
- W4285496172 hasConcept C50644808 @default.
- W4285496172 hasConcept C52001869 @default.
- W4285496172 hasConcept C71924100 @default.