Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285496614> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4285496614 endingPage "1741" @default.
- W4285496614 startingPage "1727" @default.
- W4285496614 abstract "Twin proximal support vector regression is a new regression machine designed by using twin support vector machine and proximal support vector regression. In this paper, we use the above models framework to build a new regression model, called the twin proximal least squares support vector regression model based on heteroscedastic Gaussian noise (TPLSSVR-HGN). The least square method is introduced and the regularization terms b 1 2 and b 2 2 are added respectively. It transforms an inequality constraint problem into two simpler equality constraint problems, which not only improves the training speed and generalization ability, but also effectively improves the forecasting accuracy. In order to solve the parameter selection problem of model TPLSSVR-HGN, the particle swarm optimization algorithm with fast convergence speed and good robustness is selected to optimize its parameters. In order to verify the forecasting performance of TPLSSVR-HGN, it is compared with the classical regression models on the artificial data set, UCI data set and wind-speed data set. The experimental results show that TPLSSVR-HGN has better forecasting effect than the classical regression models." @default.
- W4285496614 created "2022-07-15" @default.
- W4285496614 creator A5040872208 @default.
- W4285496614 creator A5049856806 @default.
- W4285496614 creator A5058970337 @default.
- W4285496614 creator A5077690787 @default.
- W4285496614 date "2023-01-30" @default.
- W4285496614 modified "2023-09-26" @default.
- W4285496614 title "Twin proximal least squares support vector regression machine based on heteroscedastic Gaussian noise" @default.
- W4285496614 cites W1596717185 @default.
- W4285496614 cites W1916934071 @default.
- W4285496614 cites W1966209552 @default.
- W4285496614 cites W1972555289 @default.
- W4285496614 cites W1973560868 @default.
- W4285496614 cites W1978996791 @default.
- W4285496614 cites W2017368465 @default.
- W4285496614 cites W2091426988 @default.
- W4285496614 cites W2170860445 @default.
- W4285496614 cites W2276811019 @default.
- W4285496614 cites W2550932679 @default.
- W4285496614 cites W2782482279 @default.
- W4285496614 cites W2909826973 @default.
- W4285496614 cites W3020067472 @default.
- W4285496614 cites W3049572517 @default.
- W4285496614 cites W3122596523 @default.
- W4285496614 cites W4230674625 @default.
- W4285496614 cites W4239510810 @default.
- W4285496614 doi "https://doi.org/10.3233/jifs-211631" @default.
- W4285496614 hasPublicationYear "2023" @default.
- W4285496614 type Work @default.
- W4285496614 citedByCount "0" @default.
- W4285496614 crossrefType "journal-article" @default.
- W4285496614 hasAuthorship W4285496614A5040872208 @default.
- W4285496614 hasAuthorship W4285496614A5049856806 @default.
- W4285496614 hasAuthorship W4285496614A5058970337 @default.
- W4285496614 hasAuthorship W4285496614A5077690787 @default.
- W4285496614 hasConcept C101104100 @default.
- W4285496614 hasConcept C104317684 @default.
- W4285496614 hasConcept C105795698 @default.
- W4285496614 hasConcept C11413529 @default.
- W4285496614 hasConcept C12267149 @default.
- W4285496614 hasConcept C126255220 @default.
- W4285496614 hasConcept C145828037 @default.
- W4285496614 hasConcept C152877465 @default.
- W4285496614 hasConcept C154945302 @default.
- W4285496614 hasConcept C185429906 @default.
- W4285496614 hasConcept C185592680 @default.
- W4285496614 hasConcept C33923547 @default.
- W4285496614 hasConcept C41008148 @default.
- W4285496614 hasConcept C55493867 @default.
- W4285496614 hasConcept C63479239 @default.
- W4285496614 hasConcept C70259352 @default.
- W4285496614 hasConcept C83546350 @default.
- W4285496614 hasConcept C85617194 @default.
- W4285496614 hasConcept C9936470 @default.
- W4285496614 hasConceptScore W4285496614C101104100 @default.
- W4285496614 hasConceptScore W4285496614C104317684 @default.
- W4285496614 hasConceptScore W4285496614C105795698 @default.
- W4285496614 hasConceptScore W4285496614C11413529 @default.
- W4285496614 hasConceptScore W4285496614C12267149 @default.
- W4285496614 hasConceptScore W4285496614C126255220 @default.
- W4285496614 hasConceptScore W4285496614C145828037 @default.
- W4285496614 hasConceptScore W4285496614C152877465 @default.
- W4285496614 hasConceptScore W4285496614C154945302 @default.
- W4285496614 hasConceptScore W4285496614C185429906 @default.
- W4285496614 hasConceptScore W4285496614C185592680 @default.
- W4285496614 hasConceptScore W4285496614C33923547 @default.
- W4285496614 hasConceptScore W4285496614C41008148 @default.
- W4285496614 hasConceptScore W4285496614C55493867 @default.
- W4285496614 hasConceptScore W4285496614C63479239 @default.
- W4285496614 hasConceptScore W4285496614C70259352 @default.
- W4285496614 hasConceptScore W4285496614C83546350 @default.
- W4285496614 hasConceptScore W4285496614C85617194 @default.
- W4285496614 hasConceptScore W4285496614C9936470 @default.
- W4285496614 hasIssue "2" @default.
- W4285496614 hasLocation W42854966141 @default.
- W4285496614 hasOpenAccess W4285496614 @default.
- W4285496614 hasPrimaryLocation W42854966141 @default.
- W4285496614 hasRelatedWork W1989358763 @default.
- W4285496614 hasRelatedWork W2093292602 @default.
- W4285496614 hasRelatedWork W2094764829 @default.
- W4285496614 hasRelatedWork W2102907099 @default.
- W4285496614 hasRelatedWork W2110417041 @default.
- W4285496614 hasRelatedWork W2157968113 @default.
- W4285496614 hasRelatedWork W2350259694 @default.
- W4285496614 hasRelatedWork W242508906 @default.
- W4285496614 hasRelatedWork W2755228317 @default.
- W4285496614 hasRelatedWork W3145988575 @default.
- W4285496614 hasVolume "44" @default.
- W4285496614 isParatext "false" @default.
- W4285496614 isRetracted "false" @default.
- W4285496614 workType "article" @default.