Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285496636> ?p ?o ?g. }
- W4285496636 endingPage "1293" @default.
- W4285496636 startingPage "1293" @default.
- W4285496636 abstract "Nowadays, healthcare is the prime need of every human being in the world, and clinical datasets play an important role in developing an intelligent healthcare system for monitoring the health of people. Mostly, the real-world datasets are inherently class imbalanced, clinical datasets also suffer from this imbalance problem, and the imbalanced class distributions pose several issues in the training of classifiers. Consequently, classifiers suffer from low accuracy, precision, recall, and a high degree of misclassification, etc. We performed a brief literature review on the class imbalanced learning scenario. This study carries the empirical performance evaluation of six classifiers, namely Decision Tree, k-Nearest Neighbor, Logistic regression, Artificial Neural Network, Support Vector Machine, and Gaussian Naïve Bayes, over five imbalanced clinical datasets, Breast Cancer Disease, Coronary Heart Disease, Indian Liver Patient, Pima Indians Diabetes Database, and Coronary Kidney Disease, with respect to seven different class balancing techniques, namely Undersampling, Random oversampling, SMOTE, ADASYN, SVM-SMOTE, SMOTEEN, and SMOTETOMEK. In addition to this, the appropriate explanations for the superiority of the classifiers as well as data-balancing techniques are also explored. Furthermore, we discuss the possible recommendations on how to tackle the class imbalanced datasets while training the different supervised machine learning methods. Result analysis demonstrates that SMOTEEN balancing method often performed better over all the other six data-balancing techniques with all six classifiers and for all five clinical datasets. Except for SMOTEEN, all other six balancing techniques almost had equal performance but moderately lesser performance than SMOTEEN." @default.
- W4285496636 created "2022-07-15" @default.
- W4285496636 creator A5005478174 @default.
- W4285496636 creator A5009473482 @default.
- W4285496636 creator A5015951497 @default.
- W4285496636 creator A5017837328 @default.
- W4285496636 creator A5027794122 @default.
- W4285496636 creator A5039552087 @default.
- W4285496636 creator A5042983656 @default.
- W4285496636 creator A5047243515 @default.
- W4285496636 creator A5088454561 @default.
- W4285496636 date "2022-07-13" @default.
- W4285496636 modified "2023-10-16" @default.
- W4285496636 title "Addressing Binary Classification over Class Imbalanced Clinical Datasets Using Computationally Intelligent Techniques" @default.
- W4285496636 cites W118267201 @default.
- W4285496636 cites W1546961578 @default.
- W4285496636 cites W1588282782 @default.
- W4285496636 cites W1993220166 @default.
- W4285496636 cites W1997129315 @default.
- W4285496636 cites W2056052206 @default.
- W4285496636 cites W2063135796 @default.
- W4285496636 cites W2069748910 @default.
- W4285496636 cites W2070808135 @default.
- W4285496636 cites W2085306757 @default.
- W4285496636 cites W2087347434 @default.
- W4285496636 cites W2104167780 @default.
- W4285496636 cites W2118978333 @default.
- W4285496636 cites W2119480209 @default.
- W4285496636 cites W2125283600 @default.
- W4285496636 cites W2128965734 @default.
- W4285496636 cites W2136132422 @default.
- W4285496636 cites W2137687977 @default.
- W4285496636 cites W2148143831 @default.
- W4285496636 cites W2164330572 @default.
- W4285496636 cites W2168508521 @default.
- W4285496636 cites W2334028018 @default.
- W4285496636 cites W2724494584 @default.
- W4285496636 cites W2893835498 @default.
- W4285496636 cites W2913705661 @default.
- W4285496636 cites W2936503027 @default.
- W4285496636 cites W2966679659 @default.
- W4285496636 cites W2969674096 @default.
- W4285496636 cites W2972869264 @default.
- W4285496636 cites W2974916584 @default.
- W4285496636 cites W3011249019 @default.
- W4285496636 cites W3017050370 @default.
- W4285496636 cites W3035503061 @default.
- W4285496636 cites W3044717835 @default.
- W4285496636 cites W3140914152 @default.
- W4285496636 cites W3198174103 @default.
- W4285496636 cites W4239510810 @default.
- W4285496636 cites W4300071848 @default.
- W4285496636 doi "https://doi.org/10.3390/healthcare10071293" @default.
- W4285496636 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35885819" @default.
- W4285496636 hasPublicationYear "2022" @default.
- W4285496636 type Work @default.
- W4285496636 citedByCount "28" @default.
- W4285496636 countsByYear W42854966362022 @default.
- W4285496636 countsByYear W42854966362023 @default.
- W4285496636 crossrefType "journal-article" @default.
- W4285496636 hasAuthorship W4285496636A5005478174 @default.
- W4285496636 hasAuthorship W4285496636A5009473482 @default.
- W4285496636 hasAuthorship W4285496636A5015951497 @default.
- W4285496636 hasAuthorship W4285496636A5017837328 @default.
- W4285496636 hasAuthorship W4285496636A5027794122 @default.
- W4285496636 hasAuthorship W4285496636A5039552087 @default.
- W4285496636 hasAuthorship W4285496636A5042983656 @default.
- W4285496636 hasAuthorship W4285496636A5047243515 @default.
- W4285496636 hasAuthorship W4285496636A5088454561 @default.
- W4285496636 hasBestOaLocation W42854966361 @default.
- W4285496636 hasConcept C119857082 @default.
- W4285496636 hasConcept C12267149 @default.
- W4285496636 hasConcept C124101348 @default.
- W4285496636 hasConcept C136536468 @default.
- W4285496636 hasConcept C154945302 @default.
- W4285496636 hasConcept C169258074 @default.
- W4285496636 hasConcept C197323446 @default.
- W4285496636 hasConcept C2776257435 @default.
- W4285496636 hasConcept C31258907 @default.
- W4285496636 hasConcept C41008148 @default.
- W4285496636 hasConcept C50644808 @default.
- W4285496636 hasConcept C52001869 @default.
- W4285496636 hasConcept C84525736 @default.
- W4285496636 hasConceptScore W4285496636C119857082 @default.
- W4285496636 hasConceptScore W4285496636C12267149 @default.
- W4285496636 hasConceptScore W4285496636C124101348 @default.
- W4285496636 hasConceptScore W4285496636C136536468 @default.
- W4285496636 hasConceptScore W4285496636C154945302 @default.
- W4285496636 hasConceptScore W4285496636C169258074 @default.
- W4285496636 hasConceptScore W4285496636C197323446 @default.
- W4285496636 hasConceptScore W4285496636C2776257435 @default.
- W4285496636 hasConceptScore W4285496636C31258907 @default.
- W4285496636 hasConceptScore W4285496636C41008148 @default.
- W4285496636 hasConceptScore W4285496636C50644808 @default.
- W4285496636 hasConceptScore W4285496636C52001869 @default.
- W4285496636 hasConceptScore W4285496636C84525736 @default.
- W4285496636 hasIssue "7" @default.
- W4285496636 hasLocation W42854966361 @default.