Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285497158> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4285497158 endingPage "507" @default.
- W4285497158 startingPage "507" @default.
- W4285497158 abstract "Iron redox flow batteries are a promising option for utility scale energy storage. In redox flow batteries (RFB), the power and energy storage capacities are decoupled, making them highly scalable 1,2 . Due to its high abundance, low cost, and low toxicity, iron is very attractive as a reactive species for both the positive and negative half cells in large scale redox flow batteries 3 . The Fe(II)/Fe(III) reaction is utilized at the positive electrode while the Fe(0)/Fe(II) reaction is used at the negative electrode. Unfortunately, the Fe(II) reduction reaction used in the negative cell involves plating solid iron onto the electrode during charge. This plating reaction limits the battery’s capacity based on the spatial constraints of the flow cell, coupling the power and storage capacities of the flow battery and limiting its scalability 2 . Slurry electrodes, consisting of a dispersion of conductive particles in the electrode, have been proposed as solution for this issue 4 . By having the metal deposit onto the mobile dispersion of particles, as in Figure 1B, instead of the stationary electrode as in Figure 1A, the power and storage capacities of a hybrid flow battery can be decoupled. Slurry electrodes have also been proposed in a number of other applications such as water deionization and supercapacitors 5 . Their use has also been studied for use in fully soluble RFB chemistries, such as all-vanadium 6,7 . However, nearly all of the previous work in slurry electrodes has been in highly concentrated slurries in order to take advantage of the conductivity of the percolated particle network. Unfortunately, these highly loaded slurries can be viscous and can cause clogs and failures in a flowing system such as an RFB 4,7 . In this work, the electrochemical behavior of slurries below the percolation threshold are investigated via voltammetry in a custom flow cell. The percolation threshold of a slurry is identified and the modified behavior of the Fe (II)/Fe (III) reaction is measured as a function of slurry concentration and flow rate. The results suggest that significant enhancement of the electrochemically active surface area can be achieved below the percolation threshold. (1) Dinesh, A.; Olivera, S.; Venkatesh, K.; Santosh, M. S.; Priya, M. G.; Inamuddin; Asiri, A. M.; Muralidhara, H. B. Iron-Based Flow Batteries to Store Renewable Energies. Environ. Chem. Lett. 2018 , 16 (3), 683–694. https://doi.org/10.1007/s10311-018-0709-8. (2) Weber, A. Z.; Mench, M. M.; Meyers, J. P.; Ross, P. N.; Jeffrey, T.; Liu, Q. Redox Flow Batteries , a Review Environmental Energy Technologies Division , Lawrence Berkeley National Laboratory , Department of Mechanical , Aerospace and Biomedical Engineering , University of Tennessee , Department of Chemical Engineering , McGill Un. 1–72. (3) Petek, T. J. Enhancing the Capacity of All-Iron Flow Batteries: Understanding Crossover and Slurry Electrodes. Ph.D. Thesis 2015 , No. May. (4) Petek, T. J.; Hoyt, N. C.; Savinell, R. F.; Wainright, J. S. Slurry Electrodes for Iron Plating in an All-Iron Flow Battery. J. Power Sources 2015 , 294 , 620–626. https://doi.org/10.1016/j.jpowsour.2015.06.050. (5) Mourshed, M.; Niya, S. M. R.; Ojha, R.; Rosengarten, G.; Andrews, J.; Shabani, B. Carbon-Based Slurry Electrodes for Energy Storage and Power Supply Systems. Energy Storage Mater. 2021 , 40 (April), 461–489. https://doi.org/10.1016/j.ensm.2021.05.032. (6) Percin, K.; van der Zee, B.; Wessling, M. On the Resistances of a Slurry Electrode Vanadium Redox Flow Battery. ChemElectroChem 2020 , 7 (9), 2165–2172. https://doi.org/10.1002/celc.202000242. (7) Lohaus, J.; Rall, D.; Kruse, M.; Steinberger, V.; Wessling, M. On Charge Percolation in Slurry Electrodes Used in Vanadium Redox Flow Batteries. Electrochem. commun. 2019 , 101 (March), 104–108. https://doi.org/10.1016/j.elecom.2019.02.013. Figure 1" @default.
- W4285497158 created "2022-07-15" @default.
- W4285497158 creator A5042549659 @default.
- W4285497158 creator A5067904793 @default.
- W4285497158 date "2022-07-07" @default.
- W4285497158 modified "2023-10-16" @default.
- W4285497158 title "Low Concentration Slurry Electrodes for Redox Flow Batteries" @default.
- W4285497158 doi "https://doi.org/10.1149/ma2022-013507mtgabs" @default.
- W4285497158 hasPublicationYear "2022" @default.
- W4285497158 type Work @default.
- W4285497158 citedByCount "0" @default.
- W4285497158 crossrefType "journal-article" @default.
- W4285497158 hasAuthorship W4285497158A5042549659 @default.
- W4285497158 hasAuthorship W4285497158A5067904793 @default.
- W4285497158 hasConcept C121332964 @default.
- W4285497158 hasConcept C127413603 @default.
- W4285497158 hasConcept C147789679 @default.
- W4285497158 hasConcept C159985019 @default.
- W4285497158 hasConcept C163258240 @default.
- W4285497158 hasConcept C164308340 @default.
- W4285497158 hasConcept C17525397 @default.
- W4285497158 hasConcept C179104552 @default.
- W4285497158 hasConcept C185592680 @default.
- W4285497158 hasConcept C191897082 @default.
- W4285497158 hasConcept C192562407 @default.
- W4285497158 hasConcept C2777596839 @default.
- W4285497158 hasConcept C42360764 @default.
- W4285497158 hasConcept C555008776 @default.
- W4285497158 hasConcept C55904794 @default.
- W4285497158 hasConcept C62520636 @default.
- W4285497158 hasConcept C68801617 @default.
- W4285497158 hasConcept C73916439 @default.
- W4285497158 hasConcept C94293008 @default.
- W4285497158 hasConceptScore W4285497158C121332964 @default.
- W4285497158 hasConceptScore W4285497158C127413603 @default.
- W4285497158 hasConceptScore W4285497158C147789679 @default.
- W4285497158 hasConceptScore W4285497158C159985019 @default.
- W4285497158 hasConceptScore W4285497158C163258240 @default.
- W4285497158 hasConceptScore W4285497158C164308340 @default.
- W4285497158 hasConceptScore W4285497158C17525397 @default.
- W4285497158 hasConceptScore W4285497158C179104552 @default.
- W4285497158 hasConceptScore W4285497158C185592680 @default.
- W4285497158 hasConceptScore W4285497158C191897082 @default.
- W4285497158 hasConceptScore W4285497158C192562407 @default.
- W4285497158 hasConceptScore W4285497158C2777596839 @default.
- W4285497158 hasConceptScore W4285497158C42360764 @default.
- W4285497158 hasConceptScore W4285497158C555008776 @default.
- W4285497158 hasConceptScore W4285497158C55904794 @default.
- W4285497158 hasConceptScore W4285497158C62520636 @default.
- W4285497158 hasConceptScore W4285497158C68801617 @default.
- W4285497158 hasConceptScore W4285497158C73916439 @default.
- W4285497158 hasConceptScore W4285497158C94293008 @default.
- W4285497158 hasIssue "3" @default.
- W4285497158 hasLocation W42854971581 @default.
- W4285497158 hasOpenAccess W4285497158 @default.
- W4285497158 hasPrimaryLocation W42854971581 @default.
- W4285497158 hasRelatedWork W1975079079 @default.
- W4285497158 hasRelatedWork W1989807438 @default.
- W4285497158 hasRelatedWork W2113587230 @default.
- W4285497158 hasRelatedWork W2140946262 @default.
- W4285497158 hasRelatedWork W2172047968 @default.
- W4285497158 hasRelatedWork W2364443573 @default.
- W4285497158 hasRelatedWork W2372900848 @default.
- W4285497158 hasRelatedWork W2377425434 @default.
- W4285497158 hasRelatedWork W2949187813 @default.
- W4285497158 hasRelatedWork W4285497153 @default.
- W4285497158 hasVolume "MA2022-01" @default.
- W4285497158 isParatext "false" @default.
- W4285497158 isRetracted "false" @default.
- W4285497158 workType "article" @default.