Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285501488> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4285501488 endingPage "190" @default.
- W4285501488 startingPage "173" @default.
- W4285501488 abstract "
 Purpose : This study proposes a framework for a cold-chain logistics control system, and presents a method for extracting and utilizing data collected in real-time. Besides, an AI-based data learning used to predict energy consumed by cold-chain delivery vehicles is described with a case study.
 Research design, data and methodology : In this paper, the energy consumption of cold-chain delivery was predicted using Long Short-Term Memory (LSTM) to enhance competitiveness and efficient operations in a cold-chain logistics environment. Data on dairy product delivery were used in a case study. In total, 539 sets of data were acquired by collecting data every five minutes from five vehicles within 2,695 minutes.
 Results : The LSTM model seemed to fit actual energy usage data as the epochs of the model increased. Hence, the model is expected to be more effective in predicting energy consumption at epoch settings of 1,000 or more. The validation losses for each 100, 1,000, and 10,000 epochs were 0.72802, 0.01571, and 0.00546, respectively.
 Conclusions : In this study, the framework of an integrated management system for smart logistics centers was proposed. In addition, a method for extracting and utilizing data collected in real-time was presented. In particular, this study contributes to maintaining temperature and enhancing energy efficiency by predicting the energy consumption of cold-chain delivery vehicles through AI-based data learning." @default.
- W4285501488 created "2022-07-15" @default.
- W4285501488 creator A5034223886 @default.
- W4285501488 creator A5036390613 @default.
- W4285501488 creator A5058853104 @default.
- W4285501488 date "2022-06-30" @default.
- W4285501488 modified "2023-09-26" @default.
- W4285501488 title "AI-Based Energy Consumption Predictions for Cold-chain Delivery Vehicles" @default.
- W4285501488 doi "https://doi.org/10.18104/kaic.2022.37.2.173" @default.
- W4285501488 hasPublicationYear "2022" @default.
- W4285501488 type Work @default.
- W4285501488 citedByCount "0" @default.
- W4285501488 crossrefType "journal-article" @default.
- W4285501488 hasAuthorship W4285501488A5034223886 @default.
- W4285501488 hasAuthorship W4285501488A5036390613 @default.
- W4285501488 hasAuthorship W4285501488A5058853104 @default.
- W4285501488 hasConcept C105795698 @default.
- W4285501488 hasConcept C119599485 @default.
- W4285501488 hasConcept C124101348 @default.
- W4285501488 hasConcept C127413603 @default.
- W4285501488 hasConcept C186370098 @default.
- W4285501488 hasConcept C2742236 @default.
- W4285501488 hasConcept C2780114722 @default.
- W4285501488 hasConcept C2780165032 @default.
- W4285501488 hasConcept C33923547 @default.
- W4285501488 hasConcept C41008148 @default.
- W4285501488 hasConcept C7817414 @default.
- W4285501488 hasConcept C78519656 @default.
- W4285501488 hasConceptScore W4285501488C105795698 @default.
- W4285501488 hasConceptScore W4285501488C119599485 @default.
- W4285501488 hasConceptScore W4285501488C124101348 @default.
- W4285501488 hasConceptScore W4285501488C127413603 @default.
- W4285501488 hasConceptScore W4285501488C186370098 @default.
- W4285501488 hasConceptScore W4285501488C2742236 @default.
- W4285501488 hasConceptScore W4285501488C2780114722 @default.
- W4285501488 hasConceptScore W4285501488C2780165032 @default.
- W4285501488 hasConceptScore W4285501488C33923547 @default.
- W4285501488 hasConceptScore W4285501488C41008148 @default.
- W4285501488 hasConceptScore W4285501488C7817414 @default.
- W4285501488 hasConceptScore W4285501488C78519656 @default.
- W4285501488 hasIssue "2" @default.
- W4285501488 hasLocation W42855014881 @default.
- W4285501488 hasOpenAccess W4285501488 @default.
- W4285501488 hasPrimaryLocation W42855014881 @default.
- W4285501488 hasRelatedWork W1968767884 @default.
- W4285501488 hasRelatedWork W1990841602 @default.
- W4285501488 hasRelatedWork W2408899486 @default.
- W4285501488 hasRelatedWork W2613022710 @default.
- W4285501488 hasRelatedWork W2897518494 @default.
- W4285501488 hasRelatedWork W3023658563 @default.
- W4285501488 hasRelatedWork W3134345872 @default.
- W4285501488 hasRelatedWork W3213304220 @default.
- W4285501488 hasRelatedWork W4223528911 @default.
- W4285501488 hasRelatedWork W4229332389 @default.
- W4285501488 hasVolume "37" @default.
- W4285501488 isParatext "false" @default.
- W4285501488 isRetracted "false" @default.
- W4285501488 workType "article" @default.