Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285503611> ?p ?o ?g. }
- W4285503611 abstract "Deep learning algorithms help achieve promising results in diagnosis of cancer patient. However, obtaining patient confidential data and medical images of cancer patient from medical hospitals and diagnosis centre is challenging thus preventing the deep learning usage in analysis of medical data of patient. Among woman, Breast cancer is prevailing cancer and it has become common health problem. The classification of Breast cancer focuses on identifying breast tumours sub-classes. Deep learning is among the current trends in computer science research and it enhances neural networks. The layers in neural networks are more, deep which allows higher abstraction levels and help to get accurate analysis of data. Google’s recently proposed architecture-EfficientNet, has less parameters which results in faster convergence for classification using ImageNet which showed that EfficientNet outperformed prevailing architectures such as DenseNet and ResNet. This research work include comparing the performance of EfficientNetV2-B0 architecture with DenseNet and ResNet architectures and few others for multiple class tumour classification on BreakHis dataset, which contains around 8000 histopathology images of breast that vary in magnification. This research work offers a methods that is based on transfer learning that improves existing architecture in multi-class classification by relying on pretrained DCNN trained on ImageNet dataset. Pretrained weights of EfficientNetV2-B0 are transferred as initial weights and the model is fine tuned in order to identify different benign and malignant tissue samples in tumor cells and classify them into multiclass. The model proposed has been tested with optimised hyperparameters irrespective of magnification of the images and was able to achieve accuracy upto 98%. The results surpass earlier studies in terms of accuracy across the performance metrics defined for CAD systems of breast cancer based on histological images." @default.
- W4285503611 created "2022-07-15" @default.
- W4285503611 creator A5012184654 @default.
- W4285503611 creator A5041945227 @default.
- W4285503611 creator A5063888661 @default.
- W4285503611 creator A5082372712 @default.
- W4285503611 date "2022-05-27" @default.
- W4285503611 modified "2023-09-27" @default.
- W4285503611 title "Histopathological Image Classification of Breast Cancer using EfficientNet" @default.
- W4285503611 cites W1985842955 @default.
- W4285503611 cites W2043096692 @default.
- W4285503611 cites W2117510288 @default.
- W4285503611 cites W2132031490 @default.
- W4285503611 cites W2554892747 @default.
- W4285503611 cites W2615195201 @default.
- W4285503611 cites W2620578070 @default.
- W4285503611 cites W2716665989 @default.
- W4285503611 cites W2737813497 @default.
- W4285503611 cites W2753233659 @default.
- W4285503611 cites W2762285338 @default.
- W4285503611 cites W2767410506 @default.
- W4285503611 cites W2788072220 @default.
- W4285503611 cites W2806435421 @default.
- W4285503611 cites W2808367628 @default.
- W4285503611 cites W2892991001 @default.
- W4285503611 cites W2894084084 @default.
- W4285503611 cites W2900257566 @default.
- W4285503611 cites W2903119292 @default.
- W4285503611 cites W2912354537 @default.
- W4285503611 cites W2914836117 @default.
- W4285503611 cites W2919115771 @default.
- W4285503611 cites W2928842276 @default.
- W4285503611 cites W2977153525 @default.
- W4285503611 cites W2998449599 @default.
- W4285503611 cites W3083756345 @default.
- W4285503611 cites W3169348365 @default.
- W4285503611 cites W997752780 @default.
- W4285503611 doi "https://doi.org/10.1109/incet54531.2022.9824351" @default.
- W4285503611 hasPublicationYear "2022" @default.
- W4285503611 type Work @default.
- W4285503611 citedByCount "0" @default.
- W4285503611 crossrefType "proceedings-article" @default.
- W4285503611 hasAuthorship W4285503611A5012184654 @default.
- W4285503611 hasAuthorship W4285503611A5041945227 @default.
- W4285503611 hasAuthorship W4285503611A5063888661 @default.
- W4285503611 hasAuthorship W4285503611A5082372712 @default.
- W4285503611 hasConcept C108583219 @default.
- W4285503611 hasConcept C111472728 @default.
- W4285503611 hasConcept C115961682 @default.
- W4285503611 hasConcept C119857082 @default.
- W4285503611 hasConcept C121608353 @default.
- W4285503611 hasConcept C124304363 @default.
- W4285503611 hasConcept C126322002 @default.
- W4285503611 hasConcept C138885662 @default.
- W4285503611 hasConcept C150899416 @default.
- W4285503611 hasConcept C153180895 @default.
- W4285503611 hasConcept C154945302 @default.
- W4285503611 hasConcept C2777212361 @default.
- W4285503611 hasConcept C2944601119 @default.
- W4285503611 hasConcept C2984842247 @default.
- W4285503611 hasConcept C41008148 @default.
- W4285503611 hasConcept C4144372 @default.
- W4285503611 hasConcept C50644808 @default.
- W4285503611 hasConcept C530470458 @default.
- W4285503611 hasConcept C71924100 @default.
- W4285503611 hasConcept C75294576 @default.
- W4285503611 hasConcept C8642999 @default.
- W4285503611 hasConceptScore W4285503611C108583219 @default.
- W4285503611 hasConceptScore W4285503611C111472728 @default.
- W4285503611 hasConceptScore W4285503611C115961682 @default.
- W4285503611 hasConceptScore W4285503611C119857082 @default.
- W4285503611 hasConceptScore W4285503611C121608353 @default.
- W4285503611 hasConceptScore W4285503611C124304363 @default.
- W4285503611 hasConceptScore W4285503611C126322002 @default.
- W4285503611 hasConceptScore W4285503611C138885662 @default.
- W4285503611 hasConceptScore W4285503611C150899416 @default.
- W4285503611 hasConceptScore W4285503611C153180895 @default.
- W4285503611 hasConceptScore W4285503611C154945302 @default.
- W4285503611 hasConceptScore W4285503611C2777212361 @default.
- W4285503611 hasConceptScore W4285503611C2944601119 @default.
- W4285503611 hasConceptScore W4285503611C2984842247 @default.
- W4285503611 hasConceptScore W4285503611C41008148 @default.
- W4285503611 hasConceptScore W4285503611C4144372 @default.
- W4285503611 hasConceptScore W4285503611C50644808 @default.
- W4285503611 hasConceptScore W4285503611C530470458 @default.
- W4285503611 hasConceptScore W4285503611C71924100 @default.
- W4285503611 hasConceptScore W4285503611C75294576 @default.
- W4285503611 hasConceptScore W4285503611C8642999 @default.
- W4285503611 hasLocation W42855036111 @default.
- W4285503611 hasOpenAccess W4285503611 @default.
- W4285503611 hasPrimaryLocation W42855036111 @default.
- W4285503611 hasRelatedWork W2772371429 @default.
- W4285503611 hasRelatedWork W2915754718 @default.
- W4285503611 hasRelatedWork W3016514588 @default.
- W4285503611 hasRelatedWork W3091598437 @default.
- W4285503611 hasRelatedWork W3138634112 @default.
- W4285503611 hasRelatedWork W4281382123 @default.
- W4285503611 hasRelatedWork W4285161415 @default.
- W4285503611 hasRelatedWork W4285503611 @default.
- W4285503611 hasRelatedWork W4288040045 @default.