Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285586875> ?p ?o ?g. }
- W4285586875 endingPage "475" @default.
- W4285586875 startingPage "465" @default.
- W4285586875 abstract "Traditional anthropometric measures, including body mass index (BMI), are insufficient for evaluating the risk of diabetes. This study aimed to evaluate the performance of new anthropometric measures and a combination of anthropometric measures for identifying diabetes.A total of 46 979 participants in the National Health and Nutrition Examination Survey program were included in this study. Anthropometric measures, including weight, BMI, waist circumference (WC), waist-to-height ratio (WtHR), conicity index (CI), and A Body Shape Index (ABSI), were calculated. Logistic regression analysis and restricted cubic splines were used to evaluate the association between the anthropometric indices and diabetes. The receiver operating characteristic (ROC) curve analysis was performed to compare the discrimination of different anthropometric measures.All anthropometric measures were positively and independently associated with the risk of diabetes. After adjusting for covariates, the per SD increment in WC, WtHR, and CI increased the risk of diabetes by 81%, 83%, and 81%, respectively. In the ROC analysis, CI showed superior discriminative ability for diabetes (area under the curve 0.714), and its optimum cutoff value was 1.31. Results of the combined use of BMI and other anthropometric measures showed that among participants with BMI <30 kg/m2 , an elevated level of another metric increased the risk of having diabetes (P < .001). Similarly, at low levels of weight, CI, and ABSI, an elevated BMI increased diabetes risk (P < .001).WtHR and CI had the best ability to identify diabetes when applied to the US noninstitutionalized population. Anthropometric measures containing WC information could improve the discrimination ability.目的: 包括体重指数(BMI)在内的传统人体测量方法不足以评估糖尿病的风险。这项研究旨在评估新的人体测量方法和人体测量方法的组合在识别糖尿病方面的表现。 材料和方法: 本研究共纳入46979名参加国家健康与营养调查项目的受试者。计算人体测量指标,包括体重、BMI、腰围(WC)、腰高比(WtHR)、圆锥度指数(CI)和身体形态指数(ABSI)。使用Logistic回归分析和限制三次样条法评估人体测量指标与糖尿病之间的关系。对受试者工作特征(ROC)曲线进行分析,比较不同人体测量指标的识别率。 结果: 所有人体测量指标均与糖尿病风险呈正相关且独立相关。校正协变量后,WC、WTHR和CI的每标准差增量分别使糖尿病风险增加81%、83%和81%。在ROC分析中,CI对糖尿病具有较好的鉴别能力(曲线下面积为0.714),其最佳临界值为1.31。体重指数和其它人体测量指标的联合使用结果显示,在BMI<30kg/m2 的参与者中,另一项指标的升高增加了患糖尿病的风险(P<0.001)。同样,体重、CI和ABSI值较低时,BMI升高会增加患糖尿病的风险(P<0.001)。 结论: 在美国非住院人群中,WtHR和CI识别糖尿病的能力最强。包含WC信息的人体测量指标可以提高辨别能力。." @default.
- W4285586875 created "2022-07-16" @default.
- W4285586875 creator A5050870986 @default.
- W4285586875 creator A5051705302 @default.
- W4285586875 creator A5057644049 @default.
- W4285586875 creator A5062405564 @default.
- W4285586875 creator A5063037919 @default.
- W4285586875 date "2022-07-01" @default.
- W4285586875 modified "2023-10-16" @default.
- W4285586875 title "Comparison of six anthropometric measures in discriminating diabetes: A cross‐sectional study from the National Health and Nutrition Examination Survey" @default.
- W4285586875 cites W1574715084 @default.
- W4285586875 cites W1950253279 @default.
- W4285586875 cites W1968017691 @default.
- W4285586875 cites W1986299470 @default.
- W4285586875 cites W1989400130 @default.
- W4285586875 cites W2003181421 @default.
- W4285586875 cites W2007434237 @default.
- W4285586875 cites W2009232925 @default.
- W4285586875 cites W2045377741 @default.
- W4285586875 cites W2050607094 @default.
- W4285586875 cites W2077415351 @default.
- W4285586875 cites W2103714496 @default.
- W4285586875 cites W2114041992 @default.
- W4285586875 cites W2116924365 @default.
- W4285586875 cites W2118625269 @default.
- W4285586875 cites W2125095997 @default.
- W4285586875 cites W2130717716 @default.
- W4285586875 cites W2134293572 @default.
- W4285586875 cites W2150959326 @default.
- W4285586875 cites W2163733288 @default.
- W4285586875 cites W2168261002 @default.
- W4285586875 cites W2263403918 @default.
- W4285586875 cites W2279521252 @default.
- W4285586875 cites W2514332334 @default.
- W4285586875 cites W2536082394 @default.
- W4285586875 cites W2762920249 @default.
- W4285586875 cites W2793960169 @default.
- W4285586875 cites W2794596602 @default.
- W4285586875 cites W2795638059 @default.
- W4285586875 cites W2810532319 @default.
- W4285586875 cites W2900834885 @default.
- W4285586875 cites W2957002920 @default.
- W4285586875 cites W2961683851 @default.
- W4285586875 cites W3026172159 @default.
- W4285586875 cites W3210451081 @default.
- W4285586875 cites W4285586875 @default.
- W4285586875 doi "https://doi.org/10.1111/1753-0407.13295" @default.
- W4285586875 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35841213" @default.
- W4285586875 hasPublicationYear "2022" @default.
- W4285586875 type Work @default.
- W4285586875 citedByCount "5" @default.
- W4285586875 countsByYear W42855868752022 @default.
- W4285586875 countsByYear W42855868752023 @default.
- W4285586875 crossrefType "journal-article" @default.
- W4285586875 hasAuthorship W4285586875A5050870986 @default.
- W4285586875 hasAuthorship W4285586875A5051705302 @default.
- W4285586875 hasAuthorship W4285586875A5057644049 @default.
- W4285586875 hasAuthorship W4285586875A5062405564 @default.
- W4285586875 hasAuthorship W4285586875A5063037919 @default.
- W4285586875 hasBestOaLocation W42855868752 @default.
- W4285586875 hasConcept C111214947 @default.
- W4285586875 hasConcept C126322002 @default.
- W4285586875 hasConcept C134018914 @default.
- W4285586875 hasConcept C142052008 @default.
- W4285586875 hasConcept C142724271 @default.
- W4285586875 hasConcept C151956035 @default.
- W4285586875 hasConcept C178524689 @default.
- W4285586875 hasConcept C1862650 @default.
- W4285586875 hasConcept C2776193436 @default.
- W4285586875 hasConcept C2779874844 @default.
- W4285586875 hasConcept C2780221984 @default.
- W4285586875 hasConcept C2908647359 @default.
- W4285586875 hasConcept C2993503589 @default.
- W4285586875 hasConcept C555293320 @default.
- W4285586875 hasConcept C58471807 @default.
- W4285586875 hasConcept C61427482 @default.
- W4285586875 hasConcept C71924100 @default.
- W4285586875 hasConcept C99454951 @default.
- W4285586875 hasConceptScore W4285586875C111214947 @default.
- W4285586875 hasConceptScore W4285586875C126322002 @default.
- W4285586875 hasConceptScore W4285586875C134018914 @default.
- W4285586875 hasConceptScore W4285586875C142052008 @default.
- W4285586875 hasConceptScore W4285586875C142724271 @default.
- W4285586875 hasConceptScore W4285586875C151956035 @default.
- W4285586875 hasConceptScore W4285586875C178524689 @default.
- W4285586875 hasConceptScore W4285586875C1862650 @default.
- W4285586875 hasConceptScore W4285586875C2776193436 @default.
- W4285586875 hasConceptScore W4285586875C2779874844 @default.
- W4285586875 hasConceptScore W4285586875C2780221984 @default.
- W4285586875 hasConceptScore W4285586875C2908647359 @default.
- W4285586875 hasConceptScore W4285586875C2993503589 @default.
- W4285586875 hasConceptScore W4285586875C555293320 @default.
- W4285586875 hasConceptScore W4285586875C58471807 @default.
- W4285586875 hasConceptScore W4285586875C61427482 @default.
- W4285586875 hasConceptScore W4285586875C71924100 @default.
- W4285586875 hasConceptScore W4285586875C99454951 @default.
- W4285586875 hasFunder F4320335777 @default.
- W4285586875 hasIssue "7" @default.