Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285594059> ?p ?o ?g. }
- W4285594059 abstract "As a complex hydrological problem, rainfall-runoff (RR) modeling is of importance in runoff studies, water supply, irrigation issues, and environmental management. Among the variety of approaches for RR modeling, conceptual approaches use physical concepts and are appropriate methods for representation of the physics of the problem while may fail in competition with their advanced alternatives. Contrarily, machine learning approaches for RR modeling provide high computation ability however, they are based on the data characteristics and the physics of the problem cannot be completely understood. For the sake of overcoming the aforementioned deficiencies, this study coupled conceptual and machine learning approaches to establish a robust and more reliable RR model. To this end, three hydrological process-based models namely: IHACRES, GR4J, and MISD are applied for runoff simulating in a snow-covered basin in Switzerland and then, conceptual models' outcomes together with more hydro-meteorological variables were incorporated into the model structure to construct multilayer perceptron (MLP) and support vector machine (SVM) models. At the final stage of the modeling procedure, the data fusion machine learning approach was implemented through using the outcomes of MLP and SVM models to develop two evolutionary models of fusion MLP and hybrid MLP-whale optimization algorithm (MLP-WOA). As a result of conceptual models, the IHACRES-based model better simulated the RR process in comparison to the GR4J, and MISD models. The effect of incorporating meteorological variables into the coupled hydrological process-based and machine learning models was also investigated where precipitation, wind speed, relative humidity, temperature and snow depth were added separately to each hydrological model. It is found that incorporating meteorological variables into the hydrological models increased the accuracy of the models in runoff simulation. Three different learning phases were successfully applied in the current study for improving runoff peak simulation accuracy. This study proved that phase one (only hydrological model) has a big error while phase three (coupling hydrological model by machine learning model) gave a minimum error in runoff estimation in a snow-covered catchment. The IHACRES-based MLP-WOA model with RMSE of 8.49 m3/s improved the performance of the ordinary IHACRES model by a factor of almost 27%. It can be considered as a satisfactory achievement in this study for runoff estimation through applying coupled conceptual-ML hydrological models. Recommended methodology in this study for RR modeling may motivate its application in alternative hydrological problems." @default.
- W4285594059 created "2022-07-16" @default.
- W4285594059 creator A5011828401 @default.
- W4285594059 creator A5015650513 @default.
- W4285594059 creator A5053540902 @default.
- W4285594059 date "2022-07-15" @default.
- W4285594059 modified "2023-10-18" @default.
- W4285594059 title "IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling" @default.
- W4285594059 cites W1545106967 @default.
- W4285594059 cites W1987267431 @default.
- W4285594059 cites W1990881381 @default.
- W4285594059 cites W1995661436 @default.
- W4285594059 cites W1998082582 @default.
- W4285594059 cites W1999310382 @default.
- W4285594059 cites W2010624461 @default.
- W4285594059 cites W2033904036 @default.
- W4285594059 cites W2037931255 @default.
- W4285594059 cites W2047215889 @default.
- W4285594059 cites W2059995503 @default.
- W4285594059 cites W2064615259 @default.
- W4285594059 cites W2066771937 @default.
- W4285594059 cites W2073223985 @default.
- W4285594059 cites W2081038879 @default.
- W4285594059 cites W2082156006 @default.
- W4285594059 cites W2090598548 @default.
- W4285594059 cites W2103144999 @default.
- W4285594059 cites W2138763184 @default.
- W4285594059 cites W2148183179 @default.
- W4285594059 cites W2290883490 @default.
- W4285594059 cites W2441507532 @default.
- W4285594059 cites W2488205021 @default.
- W4285594059 cites W2550265600 @default.
- W4285594059 cites W2618039931 @default.
- W4285594059 cites W2767256026 @default.
- W4285594059 cites W2802893388 @default.
- W4285594059 cites W2885736425 @default.
- W4285594059 cites W2888510948 @default.
- W4285594059 cites W2895543897 @default.
- W4285594059 cites W2912412944 @default.
- W4285594059 cites W2916584490 @default.
- W4285594059 cites W2918500418 @default.
- W4285594059 cites W2944456500 @default.
- W4285594059 cites W2977092543 @default.
- W4285594059 cites W3019038702 @default.
- W4285594059 cites W3033993412 @default.
- W4285594059 cites W3037111239 @default.
- W4285594059 cites W3107946417 @default.
- W4285594059 cites W3116058374 @default.
- W4285594059 cites W313978177 @default.
- W4285594059 cites W3161929512 @default.
- W4285594059 cites W3162399076 @default.
- W4285594059 cites W3163717816 @default.
- W4285594059 cites W3167674173 @default.
- W4285594059 cites W3184814883 @default.
- W4285594059 cites W3186242550 @default.
- W4285594059 cites W3187144126 @default.
- W4285594059 cites W3197065975 @default.
- W4285594059 cites W3199055437 @default.
- W4285594059 cites W3202127008 @default.
- W4285594059 cites W3205359112 @default.
- W4285594059 cites W3206795426 @default.
- W4285594059 cites W3211799402 @default.
- W4285594059 cites W4200569905 @default.
- W4285594059 cites W4220838365 @default.
- W4285594059 cites W3143986738 @default.
- W4285594059 doi "https://doi.org/10.1038/s41598-022-16215-1" @default.
- W4285594059 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35840640" @default.
- W4285594059 hasPublicationYear "2022" @default.
- W4285594059 type Work @default.
- W4285594059 citedByCount "33" @default.
- W4285594059 countsByYear W42855940592022 @default.
- W4285594059 countsByYear W42855940592023 @default.
- W4285594059 crossrefType "journal-article" @default.
- W4285594059 hasAuthorship W4285594059A5011828401 @default.
- W4285594059 hasAuthorship W4285594059A5015650513 @default.
- W4285594059 hasAuthorship W4285594059A5053540902 @default.
- W4285594059 hasBestOaLocation W42855940591 @default.
- W4285594059 hasConcept C119857082 @default.
- W4285594059 hasConcept C12267149 @default.
- W4285594059 hasConcept C126197015 @default.
- W4285594059 hasConcept C127313418 @default.
- W4285594059 hasConcept C13606891 @default.
- W4285594059 hasConcept C154945302 @default.
- W4285594059 hasConcept C17744445 @default.
- W4285594059 hasConcept C179717631 @default.
- W4285594059 hasConcept C199539241 @default.
- W4285594059 hasConcept C2776359362 @default.
- W4285594059 hasConcept C41008148 @default.
- W4285594059 hasConcept C49204034 @default.
- W4285594059 hasConcept C50644808 @default.
- W4285594059 hasConcept C77088390 @default.
- W4285594059 hasConcept C94625758 @default.
- W4285594059 hasConceptScore W4285594059C119857082 @default.
- W4285594059 hasConceptScore W4285594059C12267149 @default.
- W4285594059 hasConceptScore W4285594059C126197015 @default.
- W4285594059 hasConceptScore W4285594059C127313418 @default.
- W4285594059 hasConceptScore W4285594059C13606891 @default.
- W4285594059 hasConceptScore W4285594059C154945302 @default.
- W4285594059 hasConceptScore W4285594059C17744445 @default.
- W4285594059 hasConceptScore W4285594059C179717631 @default.