Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285604248> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4285604248 endingPage "e764" @default.
- W4285604248 startingPage "e758" @default.
- W4285604248 abstract "To develop and test a model based on a convolutional neural network that can identify enteric tube position accurately on chest radiography.The chest radiographs of adult patients were classified by radiologists based on enteric tube position as either critically misplaced (within the respiratory tract) or not critically misplaced (misplaced within the oesophagus or safely positioned below the diaphragm). A deep-learning model based on the 121-layer DenseNet architecture was developed using a training and validation set of 4,693 chest radiographs. The model was evaluated on an external test data set from a separate institution that consisted of 1,514 consecutive radiographs with a real-world incidence of critically misplaced enteric tubes.The receiver operator characteristic area under the curve was 0.90 and 0.92 for the internal validation and external test data sets, respectively. For the external data set with a prevalence of 4.4% of critically misplaced enteric tubes, the model achieved high accuracy (92%), sensitivity (80%), and specificity (92%) for identifying a critically misplaced enteric tube. The negative predictive value (99%) was higher than the positive predictive value (32%).The present study describes the development and external testing of a model that accurately identifies an enteric tube misplaced within the respiratory tract. This model could help reduce the risk of the catastrophic consequences of feeding through a misplaced enteric tube." @default.
- W4285604248 created "2022-07-16" @default.
- W4285604248 creator A5027355372 @default.
- W4285604248 creator A5029775305 @default.
- W4285604248 creator A5043980251 @default.
- W4285604248 creator A5056606092 @default.
- W4285604248 creator A5057778537 @default.
- W4285604248 date "2022-10-01" @default.
- W4285604248 modified "2023-09-26" @default.
- W4285604248 title "Automated detection of enteric tubes misplaced in the respiratory tract on chest radiographs using deep learning with two centre validation" @default.
- W4285604248 cites W1980283223 @default.
- W4285604248 cites W2033036039 @default.
- W4285604248 cites W2123226066 @default.
- W4285604248 cites W2556915626 @default.
- W4285604248 cites W2623880299 @default.
- W4285604248 cites W2776581140 @default.
- W4285604248 cites W2811374795 @default.
- W4285604248 cites W2901782819 @default.
- W4285604248 cites W2909043143 @default.
- W4285604248 cites W2944591725 @default.
- W4285604248 cites W2999518791 @default.
- W4285604248 cites W3003732003 @default.
- W4285604248 cites W3013294478 @default.
- W4285604248 cites W3023773746 @default.
- W4285604248 cites W3150212014 @default.
- W4285604248 cites W2160551792 @default.
- W4285604248 doi "https://doi.org/10.1016/j.crad.2022.06.011" @default.
- W4285604248 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35850868" @default.
- W4285604248 hasPublicationYear "2022" @default.
- W4285604248 type Work @default.
- W4285604248 citedByCount "1" @default.
- W4285604248 countsByYear W42856042482023 @default.
- W4285604248 crossrefType "journal-article" @default.
- W4285604248 hasAuthorship W4285604248A5027355372 @default.
- W4285604248 hasAuthorship W4285604248A5029775305 @default.
- W4285604248 hasAuthorship W4285604248A5043980251 @default.
- W4285604248 hasAuthorship W4285604248A5056606092 @default.
- W4285604248 hasAuthorship W4285604248A5057778537 @default.
- W4285604248 hasBestOaLocation W42856042481 @default.
- W4285604248 hasConcept C126322002 @default.
- W4285604248 hasConcept C126838900 @default.
- W4285604248 hasConcept C141071460 @default.
- W4285604248 hasConcept C2991859549 @default.
- W4285604248 hasConcept C3019719930 @default.
- W4285604248 hasConcept C36454342 @default.
- W4285604248 hasConcept C58471807 @default.
- W4285604248 hasConcept C71924100 @default.
- W4285604248 hasConceptScore W4285604248C126322002 @default.
- W4285604248 hasConceptScore W4285604248C126838900 @default.
- W4285604248 hasConceptScore W4285604248C141071460 @default.
- W4285604248 hasConceptScore W4285604248C2991859549 @default.
- W4285604248 hasConceptScore W4285604248C3019719930 @default.
- W4285604248 hasConceptScore W4285604248C36454342 @default.
- W4285604248 hasConceptScore W4285604248C58471807 @default.
- W4285604248 hasConceptScore W4285604248C71924100 @default.
- W4285604248 hasFunder F4320314580 @default.
- W4285604248 hasFunder F4320315071 @default.
- W4285604248 hasFunder F4320320283 @default.
- W4285604248 hasFunder F4320320284 @default.
- W4285604248 hasFunder F4320334626 @default.
- W4285604248 hasFunder F4320336039 @default.
- W4285604248 hasIssue "10" @default.
- W4285604248 hasLocation W42856042481 @default.
- W4285604248 hasLocation W42856042482 @default.
- W4285604248 hasLocation W42856042483 @default.
- W4285604248 hasOpenAccess W4285604248 @default.
- W4285604248 hasPrimaryLocation W42856042481 @default.
- W4285604248 hasRelatedWork W1586374228 @default.
- W4285604248 hasRelatedWork W2003938723 @default.
- W4285604248 hasRelatedWork W2047967234 @default.
- W4285604248 hasRelatedWork W2118496982 @default.
- W4285604248 hasRelatedWork W2364998975 @default.
- W4285604248 hasRelatedWork W2369162477 @default.
- W4285604248 hasRelatedWork W2439875401 @default.
- W4285604248 hasRelatedWork W2590251983 @default.
- W4285604248 hasRelatedWork W4238867864 @default.
- W4285604248 hasRelatedWork W2525756941 @default.
- W4285604248 hasVolume "77" @default.
- W4285604248 isParatext "false" @default.
- W4285604248 isRetracted "false" @default.
- W4285604248 workType "article" @default.