Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285604295> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4285604295 endingPage "115346" @default.
- W4285604295 startingPage "115346" @default.
- W4285604295 abstract "Understanding real-world dynamical phenomena remains a challenging task. Across various scientific disciplines, machine learning has advanced as the go-to technology to analyze nonlinear dynamical systems, identify patterns in big data, and make decision around them. Neural networks are now consistently used as universal function approximators for data with underlying mechanisms that are incompletely understood or exceedingly complex. However, neural networks alone ignore the fundamental laws of physics and often fail to make plausible predictions. Here we integrate data, physics, and uncertainties by combining neural networks, physics informed modeling, and Bayesian inference to improve the predictive potential of traditional neural network models. We embed the physical model of a damped harmonic oscillator into a fully-connected feed-forward neural network to explore a simple and illustrative model system, the outbreak dynamics of COVID-19. Our Physics Informed Neural Networks seamlessly integrate data and physics, robustly solve forward and inverse problems, and perform well for both interpolation and extrapolation, even for a small amount of noisy and incomplete data. At only minor additional cost, they self-adaptively learn the weighting between data and physics. They can serve as priors in a Bayesian Inference, and provide credible intervals for uncertainty quantification. Our study reveals the inherent advantages and disadvantages of Neural Networks, Bayesian Inference, and a combination of both and provides valuable guidelines for model selection. While we have only demonstrated these different approaches for the simple model problem of a seasonal endemic infectious disease, we anticipate that the underlying concepts and trends generalize to more complex disease conditions and, more broadly, to a wide variety of nonlinear dynamical systems. Our source code and examples are available at https://github.com/LivingMatterLab/xPINNs." @default.
- W4285604295 created "2022-07-16" @default.
- W4285604295 creator A5005886655 @default.
- W4285604295 creator A5021341531 @default.
- W4285604295 creator A5025814758 @default.
- W4285604295 creator A5070632327 @default.
- W4285604295 creator A5073356597 @default.
- W4285604295 creator A5089205791 @default.
- W4285604295 date "2022-12-01" @default.
- W4285604295 modified "2023-10-14" @default.
- W4285604295 title "Bayesian Physics Informed Neural Networks for real-world nonlinear dynamical systems" @default.
- W4285604295 cites W2217402295 @default.
- W4285604295 cites W2799419481 @default.
- W4285604295 cites W2899283552 @default.
- W4285604295 cites W2900369848 @default.
- W4285604295 cites W2978281981 @default.
- W4285604295 cites W3008834654 @default.
- W4285604295 cites W3010849941 @default.
- W4285604295 cites W3019559535 @default.
- W4285604295 cites W3021962680 @default.
- W4285604295 cites W3025512159 @default.
- W4285604295 cites W3045835659 @default.
- W4285604295 cites W3046489604 @default.
- W4285604295 cites W3115207133 @default.
- W4285604295 cites W3119873221 @default.
- W4285604295 cites W3158350785 @default.
- W4285604295 cites W3163993681 @default.
- W4285604295 cites W3167256391 @default.
- W4285604295 cites W3197610615 @default.
- W4285604295 cites W3217086243 @default.
- W4285604295 doi "https://doi.org/10.1016/j.cma.2022.115346" @default.
- W4285604295 hasPublicationYear "2022" @default.
- W4285604295 type Work @default.
- W4285604295 citedByCount "25" @default.
- W4285604295 countsByYear W42856042952022 @default.
- W4285604295 countsByYear W42856042952023 @default.
- W4285604295 crossrefType "journal-article" @default.
- W4285604295 hasAuthorship W4285604295A5005886655 @default.
- W4285604295 hasAuthorship W4285604295A5021341531 @default.
- W4285604295 hasAuthorship W4285604295A5025814758 @default.
- W4285604295 hasAuthorship W4285604295A5070632327 @default.
- W4285604295 hasAuthorship W4285604295A5073356597 @default.
- W4285604295 hasAuthorship W4285604295A5089205791 @default.
- W4285604295 hasBestOaLocation W42856042951 @default.
- W4285604295 hasConcept C107673813 @default.
- W4285604295 hasConcept C119857082 @default.
- W4285604295 hasConcept C121332964 @default.
- W4285604295 hasConcept C154945302 @default.
- W4285604295 hasConcept C2776214188 @default.
- W4285604295 hasConcept C32230216 @default.
- W4285604295 hasConcept C41008148 @default.
- W4285604295 hasConcept C50644808 @default.
- W4285604295 hasConcept C62520636 @default.
- W4285604295 hasConcept C79379906 @default.
- W4285604295 hasConceptScore W4285604295C107673813 @default.
- W4285604295 hasConceptScore W4285604295C119857082 @default.
- W4285604295 hasConceptScore W4285604295C121332964 @default.
- W4285604295 hasConceptScore W4285604295C154945302 @default.
- W4285604295 hasConceptScore W4285604295C2776214188 @default.
- W4285604295 hasConceptScore W4285604295C32230216 @default.
- W4285604295 hasConceptScore W4285604295C41008148 @default.
- W4285604295 hasConceptScore W4285604295C50644808 @default.
- W4285604295 hasConceptScore W4285604295C62520636 @default.
- W4285604295 hasConceptScore W4285604295C79379906 @default.
- W4285604295 hasLocation W42856042951 @default.
- W4285604295 hasLocation W42856042952 @default.
- W4285604295 hasLocation W42856042953 @default.
- W4285604295 hasOpenAccess W4285604295 @default.
- W4285604295 hasPrimaryLocation W42856042951 @default.
- W4285604295 hasRelatedWork W1984019423 @default.
- W4285604295 hasRelatedWork W1986418932 @default.
- W4285604295 hasRelatedWork W1991093342 @default.
- W4285604295 hasRelatedWork W2045526782 @default.
- W4285604295 hasRelatedWork W2055243143 @default.
- W4285604295 hasRelatedWork W2078622645 @default.
- W4285604295 hasRelatedWork W2170798819 @default.
- W4285604295 hasRelatedWork W2357796999 @default.
- W4285604295 hasRelatedWork W2741131631 @default.
- W4285604295 hasRelatedWork W4321636575 @default.
- W4285604295 hasVolume "402" @default.
- W4285604295 isParatext "false" @default.
- W4285604295 isRetracted "false" @default.
- W4285604295 workType "article" @default.