Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285604874> ?p ?o ?g. }
- W4285604874 endingPage "109446" @default.
- W4285604874 startingPage "109446" @default.
- W4285604874 abstract "The feature selection problem is one of the pre-processing mechanisms to find the optimal subset of features from a dataset. The search space of the problem will exponentially grow when the number of features increases. Hence, the feature selection problem is classified as an NP-hard problem, and exact algorithms cannot find the optimal subset at a reasonable time. As a result, approximate algorithms like meta-heuristic algorithms are extensively applied to solve the problem. The feature selection problem is a discrete (binary) optimization problem; consequently, a discrete meta-algorithm can be employed to find the optimal subset of features. One of the recently introduced meta-heuristic algorithms is Marine Predator Algorithm (MPA), which has shown good solutions to many continuous optimization problems. In this study, a novel Binary Marine Predator Algorithm using Time-Varying Sine and V-shaped transfer functions (BMPA-TVSinV) is proposed to find the optimal subset of features in datasets. The proposed algorithm applies two new time-varying transfer functions to convert the continuous search space to the binary one. These transfer functions considerably improve the performance of BMPA-TVSinV. Several well-known datasets with high-dimensional features and three coronavirus disease (COVID-19) datasets have been selected to compare the results of BMPA-TVSinV with some recently introduced binary meta-heuristic algorithms for the feature selection problem. The results show the superiority of BMPA-TVSinV in achieving high classification accuracy and feature reduction rate. The source code of BMPA-TVSinV for feature selection problem is publicly available at https://www.mathworks.com/matlabcentral/fileexchange/115315-bmpa-tvsinv-a-binary-metaheuristic-for-feature-selection . • A Binary Marine Predator Algorithm (BMPA-TVSinV) is proposed for feature selection. • Two novel time-varying Sine and V-shaped transfer functions are applied in BMPA. • The proposed algorithm is evaluated by high-dimensional and COVID-19 datasets. • BMPA-TVSinV archives a higher accuracy and feature reduction rate on datasets." @default.
- W4285604874 created "2022-07-16" @default.
- W4285604874 creator A5000098516 @default.
- W4285604874 date "2022-09-01" @default.
- W4285604874 modified "2023-10-07" @default.
- W4285604874 title "BMPA-TVSinV: A Binary Marine Predators Algorithm using time-varying sine and V-shaped transfer functions for wrapper-based feature selection" @default.
- W4285604874 cites W1444952417 @default.
- W4285604874 cites W2008997808 @default.
- W4285604874 cites W2028206250 @default.
- W4285604874 cites W2060070251 @default.
- W4285604874 cites W2068833644 @default.
- W4285604874 cites W2069928051 @default.
- W4285604874 cites W2075779886 @default.
- W4285604874 cites W2084581746 @default.
- W4285604874 cites W2102831150 @default.
- W4285604874 cites W2115358726 @default.
- W4285604874 cites W2153879578 @default.
- W4285604874 cites W2277561952 @default.
- W4285604874 cites W2461302873 @default.
- W4285604874 cites W2564781577 @default.
- W4285604874 cites W2593314755 @default.
- W4285604874 cites W2609220535 @default.
- W4285604874 cites W2620248872 @default.
- W4285604874 cites W2754840697 @default.
- W4285604874 cites W2801536506 @default.
- W4285604874 cites W2885770227 @default.
- W4285604874 cites W2899750879 @default.
- W4285604874 cites W2911041973 @default.
- W4285604874 cites W2945341027 @default.
- W4285604874 cites W2947186274 @default.
- W4285604874 cites W2954611310 @default.
- W4285604874 cites W2977905330 @default.
- W4285604874 cites W2982478905 @default.
- W4285604874 cites W2992732987 @default.
- W4285604874 cites W3011552424 @default.
- W4285604874 cites W3040026758 @default.
- W4285604874 cites W3047550560 @default.
- W4285604874 cites W3048412361 @default.
- W4285604874 cites W3084996758 @default.
- W4285604874 cites W3093197087 @default.
- W4285604874 cites W3095652843 @default.
- W4285604874 cites W3096523314 @default.
- W4285604874 cites W3096616939 @default.
- W4285604874 cites W3112106267 @default.
- W4285604874 cites W3112535140 @default.
- W4285604874 cites W3112746081 @default.
- W4285604874 cites W3113722716 @default.
- W4285604874 cites W3120335677 @default.
- W4285604874 cites W3132787779 @default.
- W4285604874 cites W3134710420 @default.
- W4285604874 cites W3135435311 @default.
- W4285604874 cites W3135755283 @default.
- W4285604874 cites W3139484821 @default.
- W4285604874 cites W3140207169 @default.
- W4285604874 cites W3159885222 @default.
- W4285604874 cites W3167354162 @default.
- W4285604874 cites W3170484221 @default.
- W4285604874 cites W3173256495 @default.
- W4285604874 cites W3180345578 @default.
- W4285604874 cites W3186038914 @default.
- W4285604874 cites W3202069436 @default.
- W4285604874 cites W3208510759 @default.
- W4285604874 cites W3210439805 @default.
- W4285604874 cites W3212656844 @default.
- W4285604874 cites W3215906478 @default.
- W4285604874 cites W3217293710 @default.
- W4285604874 cites W3217501705 @default.
- W4285604874 cites W4210536454 @default.
- W4285604874 cites W4212915751 @default.
- W4285604874 cites W4220830728 @default.
- W4285604874 cites W4220923808 @default.
- W4285604874 cites W4220970723 @default.
- W4285604874 cites W4221018325 @default.
- W4285604874 cites W4221057103 @default.
- W4285604874 cites W4221058162 @default.
- W4285604874 cites W4223591018 @default.
- W4285604874 cites W4225607561 @default.
- W4285604874 cites W4283012435 @default.
- W4285604874 doi "https://doi.org/10.1016/j.knosys.2022.109446" @default.
- W4285604874 hasPublicationYear "2022" @default.
- W4285604874 type Work @default.
- W4285604874 citedByCount "14" @default.
- W4285604874 countsByYear W42856048742022 @default.
- W4285604874 countsByYear W42856048742023 @default.
- W4285604874 crossrefType "journal-article" @default.
- W4285604874 hasAuthorship W4285604874A5000098516 @default.
- W4285604874 hasConcept C11413529 @default.
- W4285604874 hasConcept C119599485 @default.
- W4285604874 hasConcept C127413603 @default.
- W4285604874 hasConcept C138885662 @default.
- W4285604874 hasConcept C148483581 @default.
- W4285604874 hasConcept C153180895 @default.
- W4285604874 hasConcept C154945302 @default.
- W4285604874 hasConcept C186661526 @default.
- W4285604874 hasConcept C2524010 @default.
- W4285604874 hasConcept C2776401178 @default.
- W4285604874 hasConcept C33923547 @default.
- W4285604874 hasConcept C41008148 @default.