Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285605633> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4285605633 endingPage "303" @default.
- W4285605633 startingPage "289" @default.
- W4285605633 abstract "Link prediction is one of the most important methods to uncover evolving mechanisms of dynamic complex networks. Determining these links raises well-known technical challenges in terms of weak correlation, uncertainty and non-stationary. In this paper, we presented a novel gated graph convolutional network (GCN) based on spatio-temporal semi-variogram (STEM-GCN). It learns spacial and temporal features in order to achieve link prediction in the dynamic networks. In this STEM-GCN model, we first utilized the spatio-temporal semi-variogram to obtain the spacial and temporal correlations from the dynamic networks. Its spacial correlation helped us determine the hyper-parameters of STEM-GCN and speed up its training. The correlation smoothing strategy is also introduced to eliminate the noise through temporal correlation and to improve the accuracy of link prediction. Finally, the network dynamics are captured by propagating the spacial and temporal features between consecutive time steps with stacked memory cell structures. The extensive experiments on real data sets demonstrated the effectiveness of the proposed approach for link prediction in dynamic complex networks." @default.
- W4285605633 created "2022-07-16" @default.
- W4285605633 creator A5029039847 @default.
- W4285605633 creator A5032198957 @default.
- W4285605633 creator A5039907870 @default.
- W4285605633 creator A5053725057 @default.
- W4285605633 creator A5086667060 @default.
- W4285605633 creator A5087542455 @default.
- W4285605633 date "2022-09-01" @default.
- W4285605633 modified "2023-10-17" @default.
- W4285605633 title "Gated graph convolutional network based on spatio-temporal semi-variogram for link prediction in dynamic complex network" @default.
- W4285605633 cites W1979104937 @default.
- W4285605633 cites W2008620264 @default.
- W4285605633 cites W2046536764 @default.
- W4285605633 cites W2071963398 @default.
- W4285605633 cites W2610034660 @default.
- W4285605633 cites W2784244651 @default.
- W4285605633 cites W2799789854 @default.
- W4285605633 cites W2888845630 @default.
- W4285605633 cites W2890072063 @default.
- W4285605633 cites W2951653466 @default.
- W4285605633 cites W2962975498 @default.
- W4285605633 cites W2969227524 @default.
- W4285605633 cites W2998298428 @default.
- W4285605633 cites W2999491640 @default.
- W4285605633 cites W3080539531 @default.
- W4285605633 cites W3102724374 @default.
- W4285605633 cites W3105175154 @default.
- W4285605633 cites W3111962319 @default.
- W4285605633 cites W3119720317 @default.
- W4285605633 cites W3133618741 @default.
- W4285605633 cites W3159040448 @default.
- W4285605633 cites W3160967194 @default.
- W4285605633 cites W3163763606 @default.
- W4285605633 cites W3166471440 @default.
- W4285605633 cites W3172758528 @default.
- W4285605633 cites W3173150024 @default.
- W4285605633 cites W4210257598 @default.
- W4285605633 doi "https://doi.org/10.1016/j.neucom.2022.07.030" @default.
- W4285605633 hasPublicationYear "2022" @default.
- W4285605633 type Work @default.
- W4285605633 citedByCount "3" @default.
- W4285605633 countsByYear W42856056332023 @default.
- W4285605633 crossrefType "journal-article" @default.
- W4285605633 hasAuthorship W4285605633A5029039847 @default.
- W4285605633 hasAuthorship W4285605633A5032198957 @default.
- W4285605633 hasAuthorship W4285605633A5039907870 @default.
- W4285605633 hasAuthorship W4285605633A5053725057 @default.
- W4285605633 hasAuthorship W4285605633A5086667060 @default.
- W4285605633 hasAuthorship W4285605633A5087542455 @default.
- W4285605633 hasConcept C117220453 @default.
- W4285605633 hasConcept C124101348 @default.
- W4285605633 hasConcept C132525143 @default.
- W4285605633 hasConcept C13540734 @default.
- W4285605633 hasConcept C153180895 @default.
- W4285605633 hasConcept C154945302 @default.
- W4285605633 hasConcept C2524010 @default.
- W4285605633 hasConcept C31258907 @default.
- W4285605633 hasConcept C31972630 @default.
- W4285605633 hasConcept C33923547 @default.
- W4285605633 hasConcept C3770464 @default.
- W4285605633 hasConcept C41008148 @default.
- W4285605633 hasConcept C80444323 @default.
- W4285605633 hasConceptScore W4285605633C117220453 @default.
- W4285605633 hasConceptScore W4285605633C124101348 @default.
- W4285605633 hasConceptScore W4285605633C132525143 @default.
- W4285605633 hasConceptScore W4285605633C13540734 @default.
- W4285605633 hasConceptScore W4285605633C153180895 @default.
- W4285605633 hasConceptScore W4285605633C154945302 @default.
- W4285605633 hasConceptScore W4285605633C2524010 @default.
- W4285605633 hasConceptScore W4285605633C31258907 @default.
- W4285605633 hasConceptScore W4285605633C31972630 @default.
- W4285605633 hasConceptScore W4285605633C33923547 @default.
- W4285605633 hasConceptScore W4285605633C3770464 @default.
- W4285605633 hasConceptScore W4285605633C41008148 @default.
- W4285605633 hasConceptScore W4285605633C80444323 @default.
- W4285605633 hasLocation W42856056331 @default.
- W4285605633 hasOpenAccess W4285605633 @default.
- W4285605633 hasPrimaryLocation W42856056331 @default.
- W4285605633 hasRelatedWork W2033914206 @default.
- W4285605633 hasRelatedWork W2042327336 @default.
- W4285605633 hasRelatedWork W2046077695 @default.
- W4285605633 hasRelatedWork W2146076056 @default.
- W4285605633 hasRelatedWork W2163831990 @default.
- W4285605633 hasRelatedWork W2378160586 @default.
- W4285605633 hasRelatedWork W2389896045 @default.
- W4285605633 hasRelatedWork W3003836766 @default.
- W4285605633 hasRelatedWork W3107474891 @default.
- W4285605633 hasRelatedWork W7836671 @default.
- W4285605633 hasVolume "505" @default.
- W4285605633 isParatext "false" @default.
- W4285605633 isRetracted "false" @default.
- W4285605633 workType "article" @default.