Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285609506> ?p ?o ?g. }
- W4285609506 abstract "Finding small vertex covers in a graph has applications in numerous domains such as scheduling, computational biology, telecommunication networks, artificial intelligence, social science, and many more. Two common formulations of the problem include: Minimum Vertex Cover (MVC), which finds the smallest vertex cover in a graph, and Parameterized Vertex Cover (PVC), which finds a vertex cover whose size is less than or equal to some parameter <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$k$</tex> . Algorithms for both formulations involve traversing a search tree, which grows exponentially with the size of the graph or the value of <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$k$</tex> . Parallelizing the traversal of the vertex cover search tree on GPUs is challenging for multiple reasons. First, the search tree is a narrow binary tree which makes it difficult to extract enough sub-trees to process in parallel to fully utilize the GPU's massively parallel execution resources. Second, the search tree is highly imbalanced which makes load balancing across a massive number of parallel GPU workers especially challenging. Third, keeping around all the intermediate state needed to traverse many sub-trees in parallel puts high pressure on the GPU's memory resources and may act as a limiting factor to parallelism. To address these challenges, we propose an approach to traverse the vertex cover search tree in parallel using GPUs while handling dynamic load balancing. Each thread block traverses a different sub-tree using a local stack, however, we use a global worklist to balance the load to ensure that all blocks remain busy. Blocks contribute branches of their sub-trees to the global worklist on an as-needed basis, while blocks that finish their sub-trees pick up new ones from the global worklist. We use degree arrays to represent intermediate graphs so that the representation is compact in memory to avoid limiting parallelism, but self-contained which is necessary for the load balancing process. Our evaluation shows that compared to approaches used in prior work, our hybrid approach of using local stacks and a global worklist substantially improves performance and reduces load imbalance, especially on difficult instances of the problem. Our implementations have been open sourced to enable further research on parallel solutions to the vertex cover problem and other similar problems involving parallel traversal of narrow and highly imbalanced search trees." @default.
- W4285609506 created "2022-07-16" @default.
- W4285609506 creator A5011105107 @default.
- W4285609506 creator A5015665213 @default.
- W4285609506 creator A5051065386 @default.
- W4285609506 creator A5055641970 @default.
- W4285609506 creator A5076404852 @default.
- W4285609506 date "2022-05-01" @default.
- W4285609506 modified "2023-09-27" @default.
- W4285609506 title "Parallel Vertex Cover Algorithms on GPUs" @default.
- W4285609506 cites W131619556 @default.
- W4285609506 cites W1436538595 @default.
- W4285609506 cites W1492022068 @default.
- W4285609506 cites W1518653692 @default.
- W4285609506 cites W1557597301 @default.
- W4285609506 cites W1581948821 @default.
- W4285609506 cites W1593916827 @default.
- W4285609506 cites W159504299 @default.
- W4285609506 cites W1599636498 @default.
- W4285609506 cites W163293639 @default.
- W4285609506 cites W1971346768 @default.
- W4285609506 cites W1972577597 @default.
- W4285609506 cites W1973852671 @default.
- W4285609506 cites W1983330102 @default.
- W4285609506 cites W2020681752 @default.
- W4285609506 cites W2030970869 @default.
- W4285609506 cites W2059451253 @default.
- W4285609506 cites W2073025989 @default.
- W4285609506 cites W2092783294 @default.
- W4285609506 cites W2097844290 @default.
- W4285609506 cites W2157983116 @default.
- W4285609506 cites W2185104320 @default.
- W4285609506 cites W2286462955 @default.
- W4285609506 cites W2296642999 @default.
- W4285609506 cites W2401610261 @default.
- W4285609506 cites W2513955757 @default.
- W4285609506 cites W2840315815 @default.
- W4285609506 cites W2903686141 @default.
- W4285609506 cites W3010460567 @default.
- W4285609506 cites W3021196172 @default.
- W4285609506 cites W3136926519 @default.
- W4285609506 cites W3142927759 @default.
- W4285609506 cites W3164237119 @default.
- W4285609506 cites W4220807878 @default.
- W4285609506 cites W4231595696 @default.
- W4285609506 cites W4298333093 @default.
- W4285609506 cites W99366755 @default.
- W4285609506 cites W2891759099 @default.
- W4285609506 doi "https://doi.org/10.1109/ipdps53621.2022.00028" @default.
- W4285609506 hasPublicationYear "2022" @default.
- W4285609506 type Work @default.
- W4285609506 citedByCount "1" @default.
- W4285609506 countsByYear W42856095062022 @default.
- W4285609506 crossrefType "proceedings-article" @default.
- W4285609506 hasAuthorship W4285609506A5011105107 @default.
- W4285609506 hasAuthorship W4285609506A5015665213 @default.
- W4285609506 hasAuthorship W4285609506A5051065386 @default.
- W4285609506 hasAuthorship W4285609506A5055641970 @default.
- W4285609506 hasAuthorship W4285609506A5076404852 @default.
- W4285609506 hasBestOaLocation W42856095062 @default.
- W4285609506 hasConcept C11413529 @default.
- W4285609506 hasConcept C120373497 @default.
- W4285609506 hasConcept C132525143 @default.
- W4285609506 hasConcept C13280743 @default.
- W4285609506 hasConcept C138843760 @default.
- W4285609506 hasConcept C140745168 @default.
- W4285609506 hasConcept C148764684 @default.
- W4285609506 hasConcept C165464430 @default.
- W4285609506 hasConcept C173608175 @default.
- W4285609506 hasConcept C176809094 @default.
- W4285609506 hasConcept C190475519 @default.
- W4285609506 hasConcept C205649164 @default.
- W4285609506 hasConcept C40687702 @default.
- W4285609506 hasConcept C41008148 @default.
- W4285609506 hasConcept C80444323 @default.
- W4285609506 hasConcept C80899671 @default.
- W4285609506 hasConcept C96333769 @default.
- W4285609506 hasConceptScore W4285609506C11413529 @default.
- W4285609506 hasConceptScore W4285609506C120373497 @default.
- W4285609506 hasConceptScore W4285609506C132525143 @default.
- W4285609506 hasConceptScore W4285609506C13280743 @default.
- W4285609506 hasConceptScore W4285609506C138843760 @default.
- W4285609506 hasConceptScore W4285609506C140745168 @default.
- W4285609506 hasConceptScore W4285609506C148764684 @default.
- W4285609506 hasConceptScore W4285609506C165464430 @default.
- W4285609506 hasConceptScore W4285609506C173608175 @default.
- W4285609506 hasConceptScore W4285609506C176809094 @default.
- W4285609506 hasConceptScore W4285609506C190475519 @default.
- W4285609506 hasConceptScore W4285609506C205649164 @default.
- W4285609506 hasConceptScore W4285609506C40687702 @default.
- W4285609506 hasConceptScore W4285609506C41008148 @default.
- W4285609506 hasConceptScore W4285609506C80444323 @default.
- W4285609506 hasConceptScore W4285609506C80899671 @default.
- W4285609506 hasConceptScore W4285609506C96333769 @default.
- W4285609506 hasFunder F4320309999 @default.
- W4285609506 hasLocation W42856095061 @default.
- W4285609506 hasLocation W42856095062 @default.
- W4285609506 hasOpenAccess W4285609506 @default.
- W4285609506 hasPrimaryLocation W42856095061 @default.
- W4285609506 hasRelatedWork W1562918010 @default.